RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry MCQS

RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry MCQS

Other Exercises

Mark the correct alternative in each of the following:
Question 1.
If (4, 19) is a solution of the equation y = ax + 3, then a =
(a) 3                           
(b) 4
(c) 5            
(d) 6
Solution:
∵  (4, 19) is a solution of equation
y = ax + 3
∴ x = 4, y= 19 will satisfy the equation
∴  19 = a x 4 + 3 = 4a + 3
4a = 19-3 = 16 ⇒ a= \(\frac { 16 }{ 4 }\) = 4
∴  a = 4                                      (b)

Question 2.
If (a, 4) lies on the graph of 3x + y = 10, then the value of a is
(a) 3                           
(b) 1
(c) 2                           
(d) 4
Solution:
∵  (a, 4) is the solution of the equation 3x + y = 10
∴ x = a, y = 4 will satisfy the equation
∴ Substituting the value of x and y in the equation
3 xa + 4= 10 ⇒  3a =10- 4 = 6
⇒  a =  \(\frac { 6 }{ 3 }\) = 2
∴ a = 2                                           (c)

Question 3.
The graph of the linear equation 2x – y= 4 cuts x-axis at
(a) (2, 0)                     
(b) (-2, 0)
(c) (0, -4)                    
(d) (0, 4)
Solution:
∵  graph of the equation,
2x – y = 4 cuts x-axis
∴ y = 0
∴  2x – 0 = 4 ⇒  2x = 4
⇒  x = \(\frac { 4 }{ 2 }\) = 2
∴ The line cuts x-axis at (2, 0)               (a)

Question 4.
How many linear equations are satisfied by x = 2 and y = -3 ?
(a) Only one                
(b)   Two
(c) Three                     
(d)    Infinitely many
Solution:
∵  From a point, infinitely number of lines can pass.
∴  The solution x = 2, y = -3 is the solution of infinitely many linear equations.       (d)

Question 5.
The equation x – 2 = 0 on number line is represented by
(a) aline                      
(b)   a point
(c) infinitely many lines
(d) two lines
Solution:
The equation x – 2 = 0
⇒  x = 2
∴ It is representing by a point on a number line. (b)

Question 6.
x = 2, y = -1 is a solution of the linear equation
(a) x   + 2y  = 0           
(b) x + 2y =  4
(c) 2x + y =  0            
(d) 2x + y =  5
Solution:
x = 2, y = -1
Substituting the values of x and y in the equations one by one, we get (a) x + 2y = 0
⇒ 2 + 2(-1) = 0
⇒ 2 – 2 = 0
⇒ 0 = 0 which is true                             (a)

Question 7.
If (2k – 1, k) is a solution of the equation 10x – 9y = 12, then k =
(a) 1                           
(b) 2
(c) 3                           
(d) 4
Solution:
∵  (2k – 1, k) is a solution of the equation 10x – 9y = 12
Substituting the value of x and y in the equation
10(2k – 1) – 9k = 12
⇒ 20k – 10-9k= 12
⇒  20k – 9k = 12 + 10
⇒  11k = 22
⇒  k =\(\frac { 22 }{ 11 }\)  = 2
∴  k = 2                                                 (b)

Question 8.
The distance between the graph of the equation x = – 3    and x   = 2      is
(a) 1                             
(b) 2
(c) 3                             
(d) 5
Solution:
The distance between the  graphs of the equation
x = -3 and x = 2 will be
2(-3) = 2+ 3 = 5                                     (b) 

Question 9.
The distance   between the graphs of the equations y = -1 and y = 3    is
(a) 2                            
(b) 4
(c) 3                            
(d) 1
Solution:
The distance between the graphs of the equation
y = -1 and y = 3
is 3 – (-1) = 3 + 1 = 4                            (b)

Question 10.
If the graph of the equation 4x + 3y = 12 cuts the co-ordinate axes at A and B, then hypotenuse of right triangle AOB is of length
(a) 4 units
(b) 3 units
(c) 5 units          
(d) none of these
Solution:
Equation is 4x + 3y = 12
If it cuts the x-axis, then y = 0
∴  4x x 3 x 0 = 12
⇒  4x = 12 ⇒  x = \(\frac { 12 }{ 4 }\) = 3
OA = 3 units
∴ The point of intersection of x-axis is (3, 0)
Again if it cuts the y-axis, then x = 0 , Y= 0
∴  4x x 3 x 0 = 12
⇒ 4x = 12 ⇒ x =  \(\frac { 12 }{ 3 }\) = 4
⇒ OB = 4 units
∴ The point of intersection is (0, 4)
∴ In right ΔAOB,
AB2 = AO2 + OB2
= (3)2 + (4)2
= 9 + 16 = 25
= (5)2
∴ AB = 5 units                                        (c)

Hope given RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS

RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS

These Solutions are part of RS Aggarwal Solutions Class 10. Here we have given RS Aggarwal Solutions Class 10 Chapter 4 Triangles MCQS.

Other Exercises

Choose the correct answer in each of the following questions.
Question 1.
Solution:
(c) A man goes from O to 24 m due west at A and then 10 m due north at B.
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 1
Now, AB² = OA² + OB²
= (24)² + (10)² = 576 + 100 = 676 = (26)²
AB = 26 m

Question 2.
Solution:
(b) Two poles AB and CD are standing on the plane ground 8 m apart.
AB = 13 m and CD = 7 m, CE || DB
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 2
In right ∆ACE,
AC² = CE² + AE²
= (8)² + (6)² = 64 + 36 = 100 = (10)²
AC = 10 m
Distance between the tops of poles = 10 m

Question 3.
Solution:
(c) A vertical stick AB = 1.8 m
and its shadow = 45 cm = 0.45 m
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 3
At the same time, let x cm be the shadow of 6 m long pole.
∆ABC ~ ∆DEF
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 4

Question 4.
Solution:
(d) Shadow of a vertical pole 6 m long is 3.6 m on the ground and shadow of a tower at the same, is 18 m.
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 5

Question 5.
Solution:
(d) Shadow of 5 m long stick = 2 m
Let shadow of 12.5 m high tree at the same time = x
∆ABC ~ ∆DEF
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 6

Question 6.
Solution:
(a) Length of ladder AB = 25 m .
Height above the ground = 24 m
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 7
Let its foot is x m away from the foot of building.
In right ∆ABC,
AB² = AC² + BC² (Pythagoras Theorem)
(25)² = (24)² + x²
⇒ 625 = 576 + x²
⇒ x² = 625 – 576 = 49 = (7)²
x = 7
Distance = 7 m

Question 7.
Solution:
(b) O is a point inside ∆MNP such that
MOP = 90°, OM = 16 cm, OP = 12 cm.
If MN = 21 cm ∠NMP = 90°, then NP = ?
Let MP = x Now, in right ∆MOP,
∠O = 90°
MP² = OM² + OP² (Pythagoras Theorem)
= (16)² + (12)² = 256 + 144 = 400 = (20)²
MP = 20 cm
Now, in right ∆MNP, ∠M = 90°
NP² = MN² + MP²
= (21)² + (20)² = 441 + 400 = 841 = (29)²
NP = 29 cm

Question 8.
Solution:
(b) Let ∆ABC is a right angled triangle with ∠B = 90°
AC = 25 cm
Let one side AB of the other two sides = x cm
then second side BC = (x + 5) cm
According to the Pythagoras Theorem,
AC² = AB² + BC²
(25)² = x² + (x + 5)²
625 = x² + x² + 10x + 25
⇒ 2x² + 10x + 25 – 625 = 0
⇒ 2x² + 10x – 600 = 0
⇒ x² + 5x – 300 = 0
⇒ x² + 20x – 15x – 300 = 0
⇒ x (x + 20) – 15 (x + 20) = 0
⇒ (x + 20)(x – 15) = 0
Either x + 20 = 0, then x = -20 which is not possible being negative,
or x – 15 = 0, then x = 15
First side = 15 cm
and second side = 15 + 5 = 20 cm

Question 9.
Solution:
(b) Side of an equilateral triangle = 12 cm
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 8

Question 10.
Solution:
(d) In isosceles ∆ABC,
AB = AC = 13 cm
Length of altitude AB, (from A to BC) = 5 cm
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 9
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 10

Question 11.
Solution:
(a) In the given figure,
AB = 6 cm, AC = 8 cm
AD is the bisector of ∠A which meets BC at D.
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 11

Question 12.
Solution:
(d) In the given figure,
AD is the internal bisector of ∠A
BD = 4 cm, DC = 5 cm, AB = 6 cm
Let AC = x cm
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 12

Question 13.
Solution:
(b) In the given figure,
AD is the bisector of ∠A of ∆ABC.
AB = 10 cm, AC = 14 cm and BC = 6 cm
Let CD = x cm
Then BD = (6 – x) cm
Now, AD is the bisector of ∠A
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 13

Question 14.
Solution:
(b) In a ∆ABC, AD ⊥ BC and BD = DC
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 14
In a ∆ABC, AD = \(\frac { 1 }{ 2 }\) BC and BD = DC.
In right ∆ABD and ∆ACD
AD = AD (common)
∠ABD = ∠ADC (each 90°)
BD = DC (given)
∆ABD = ∆ACD (SAS axiom)
AB = AC
∆ABC is an isosceles triangle.

Question 15.
Solution:
(c) In equilateral ∆ABC, AD ⊥ BC
Then BD = DC = \(\frac { 1 }{ 2 }\) BC
Now, in right ∆ABD,
AB² = BD² + AD² (Pythagoras Theorem)
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 15

Question 16.
Solution:
(c) In a rhombus, each side = 10 cm and one diagonal = 12 cm
AB = BC = CD = DA = 10 cm BD = 12 cm
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 16
The diagonals of a rhombus bisect each other at right angles.
In ∆AOB,
AB² = AO² + BO²
⇒ (10)² = AO² + (6)²
⇒ AO² = (10)² – (6)² = 100 – 36 = 64 = 8²
AO = 8 cm
Diagonals AC = 2 x AO = 2 x 8 = 16 cm

Question 17.
Solution:
(b) Length of diagonals of a rhombus are 24 cm and 10 cm.
The diagonals of a rhombus bisect each other at right angles.
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 17
In rhombus ABCD
AO = OC, BO = OD
Let AO = OC = \(\frac { 24 }{ 2 }\) = 12 cm
BO = OD = \(\frac { 10 }{ 2 }\) = 5 cm
Now, in right ∆AOB,
AB² = AO² + BO² (Pythagoras Theorem)
= (12)² + (5)² = 144 + 25 = 169 = (13)²
AB = 13
Each side of rhombus = 13 cm

Question 18.
Solution:
(b) Diagonals of e. quadrilateral divides each other proportionally, then it is
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 18
In quadrilateral ABCD, diagonals AC and BD intersect each-other at O and \(\frac { AO }{ OC }\) = \(\frac { BO }{ OD }\)
Then, quadrilateral ABCD is a trapezium.

Question 19.
Solution:
(a) In the given figure,
ABCD is a trape∠ium and its diagonals AC
and BD intersect at O.
and OA = (3x – 1) cm OB = (2x + 1) cm, OC and OD = (6x – 5) cm
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 19

Question 20.
Solution:
(a) The line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram

Question 21.
Solution:
(c) If the bisector of angle of a triangle bisects the opposite side of a triangle.
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 20

Question 22.
Solution:
(a) In ∆ABC,
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 21
∠B = 70° and ∠C = 50°
But ∠A + ∠B + ∠C = 180° (Angles of a triangle)
∠A = 180° – (∠B + ∠C)
= 180° – (70° + 50°)
= 180° – 120° = 60°
\(\frac { AB }{ AC }\) = \(\frac { BD }{ DC }\)
AD is the bisector of ∠A
∠BAD = \(\frac { 60 }{ 2 }\) = 30°

Question 23.
Solution:
(b) In ∆ABC, DE || BC
AD = 2.4 cm, AE = 3.2 cm, EC = 4.8 cm
Let AD = x cm
DE || BC
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 22

Question 24.
Solution:
(b) In ∆ABC, DE || BC
AB = 7.2 cm, AC = 6.4 cm, AD = 4.5 cm
Let AE = x cm
DE || BC
∆ADE ~ ∆ABC
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 23

Question 25.
Solution:
(c) In ∆ABC, DE || BC
AD = (7x – 4) cm, AE = (5x – 2) cm DB = (3x + 4) cm and EC = 3x cm
In ∆ABC, DE || BC
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 24
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 25

Question 26.
Solution:
(d) In ∆ABC, DE || BC
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 26

Question 27.
Solution:
(b) ∆ABC ~ ∆DEF
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 27
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 28

Question 28.
Solution:
(a) ∆ABC ~ ∆DEF
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 29

Question 29.
Solution:
(d) ∆DEF ~ ∆ABC
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 30
Perimeter of ∆DEF = DE + EF + DF
= 12 + 8 + 10 = 30 cm

Question 30.
Solution:
(d) ABC and BDE are two equilateral triangles such that D is the midpoint of BC.
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 31

Question 31.
Solution:
(b) ∆ABC ~ ∆DFE.
∠A = 30°, ∠C = 50°, AB = 5cm, AC = 8 cm and DF = 7.5 cm
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 32

Question 32.
Solution:
(c) In ∆ABC, ∠A = 90°
AD ⊥ BC
In ∆ABD and ∆ADC
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 33

Question 33.
Solution:
(c) In ∆ABC, AB = 6 cm, AC = 12 cm and BC = 6 cm.
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 34
Longest side (AC)2 = (12)2 = 144
AB2 + BC2 = (6√3)2 + (6)2 = 108 + 36 = 144
AC2 = AB2 + BC2 (Converse of Pythagoras Theorem)
∠B = 90°

Question 34.
Solution:
(c) In ∆ABC and ∆DEF, \(\frac { AB }{ DE }\) = \(\frac { BC }{ FD }\)
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 34
For similarity,
Here, included angles must be equal and these
are ∠B = ∠D.

Question 35.
Solution:
(b) In ∆DEF and ∆PQR,
∠D = ∠Q and ∠R = ∠E
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 35

Question 36.
Solution:
(c) ∆ABC ~ ∆EDF
∠A = ∠E, ∠B = ∠D, ∠C = ∠F
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 36

Question 37.
Solution:
(b) In ∆ABC and ∆DEF,
∠B = ∠E, ∠F = ∠C and AB = 3DE
The triangles are similar as two angles are equal but including sides are not proportional.

Question 38.
Solution:
(a)
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 37

Question 39.
Solution:
(d) In the given figure, two line segments AC and BD intersect each other at P such that
PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, ∠APB = 50° and ∠CDP = 30°
In ∆ABP and ∆CPD,
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 37

Question 40.
Solution:
(d) Corresponding sides of two similar triangles = 4:9
The areas of there triangle will be in the ratio
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 39

Question 41.
Solution:
(d)
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 40
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 41

Question 42.
Solution:
(b) In the given figure,
∆ABC is an equilateral triangle.
D is midpoint of AB and E is the midpoint of AC.
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 42

Question 43.
Solution:
(b)
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 43
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 44

Question 44.
Solution:
(b) ∆ABC ~ ∆DEF
ar (∆ABC) = 36 cm² and ar (∆DEF) = 49 cm²
i.e. areas are in the ratio 36 : 49
Ratio in their corresponding sides = √36 : √49 = 6 : 7

Question 45.
Solution:
(c) Two isosceles triangles have their corresponding angles equal and ratio in their areas is 25 : 36.
The ratio in their corresponding altitude
(heights) = √25 : √36 = 5 : 6 (∆s are similar)

Question 46.
Solution:
(b) The line segments joining the midpoints of a triangle form 4 triangles which are similar to the given (original) triangle.

Question 47.
Solution:
(b) ∆ABC ~ ∆QRP
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 45

Question 48.
Solution:
(c) In the given figure, O is the point of intersection of two chords AB and CD.
OB = OD and ∠AOC = 45°
∠B = ∠D (Angles opposite to equal sides)
∠A = ∠D, ∠C = ∠B (Angles in the same segment)
and ∠AOC = ∠BOD = 45° each
∆OAC ~ ∆ODB (AAA axiom)
OA = OC (Sides opposite to equal angles)
∆OAC and ∆ODB are isosceles and similar.

Question 49.
Solution:
(d) In an isosceles ∆ABC,
AC = BC
⇒ AB² = 2 AC²
⇒ AB² = AC² + AC²
⇒ AB² = AC² + BC² (AC = BC)
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 46
Converse of the Pythagoras Theorem,
∆ABC is a right triangle and angle opposite to AB = 90°
∠C = 90°

Question 50.
Solution:
(b) In ∆ABC,
AB = 16 cm, BC = 12 cm and AC = 20 cm
(Longest side)2 = 20² = 400
Sum of square on other sides = AB² + BC²
= 162 + 122 = 256 + 144 = 400
AC² = AB² + BC²
∆ABC is a right triangle.

True/False type
Question 51.
Solution:
(c) (a) False. Not always congruent.
(b) False. Two similar figures are similar if they have same shape, not size in every case.
(c) True.
(d) False. Not in each case.

Question 52.
Solution:
(a) True
(b) False, as ratio of the areas of the two similar triangles is equal to the ratio of the square of their corresponding sides.
(c) True
(d) True

Question 53.
Matching of columns : (2 marks)
Solution:
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 47
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 48
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 49
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 50
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 51

Question 54.
Solution:
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 52
RS Aggarwal Class 10 Solutions Chapter 4 Triangles MCQS 53
correct answer is
(a) → (r)
(b) → (q)
(c) → (p)
(d) → (s)

Hope given RS Aggarwal Solutions Class 10 Chapter 4 Triangles MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry VSAQS

RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry VSAQS

Other Exercises

Question 1.
Write the equation representing x-axis.
Solution:
The equation of x-axis is, y = 0.

Question 2.
Write the equation representing y-axis.
Solution:
The equation of y-axis is, x = 0.

Question 3.
Write the equation of a line passing through the point (0, 4) and parallel to x-axis.
Solution:
The equation of the line passing through the point (0,4) and parallel to x-axis will be y = 4.

Question 4.
Write the equation of a line passing through the point (3, 5) and parallel to x-axis.
Solution:
The equation of the line passing through the point (3, 5) and parallel to x-axis will be y = 5.

Question 5.
Write the equation of a line parallel toy-axis and passing through the point (-3, -7).
Solution:
The equations of the line passing through the point (-3, -7) and parallel to y-axis will be x = -3.

Question 6.
A line passes through the point (-4, 6) and is parallel to x-axis. Find its equation. A line passes through the point (-4, 6) and is parallel to x-axis. Find its equation.
Solution:
A line parallel to x-axis and passing through the point (-4, 6) will be y = 6.

Question 7.
Solve the equation 3x – 2 = 2x + 3 and represent the solution on the number line.
Solution:
3x – 2 = 2x + 3
⇒  3x – 2x = 3 + 2 (By terms formation)
⇒  x = 5
∴ x = 5
Solution on the number line is
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry VSAQS Q7.1

Question 8.
Solve the equation 2y – 1 = y + 1 and represent it graphically on the coordinate plane.
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry VSAQS Q8.1
Solution:
2y – 1 = y + 1
⇒ 2y – y = 1 +1
⇒  y = 2
∴ It is a line parallel to x-axis at a distance of 2 units above the x-axis is y = 2.

Question 9.
If the point (a, 2) lies on the graph of the linear equation 2x – 3y + 8 = 0, find the value of a.
Solution:
∵ 
Points (a, 2) lies on the equation
2x – 3y + 8 = 0
∴ It will satisfy the equation,
Now substituting the value of x = a, y = 2 in the equation
⇒ 2a – 3 x 2+ 8= 0
⇒ 2a + 2= 0
⇒ 2a = -2
⇒ a = \(\frac { -2 }{ 2 }\) = -1
∴ a = -1

Question 10.
Find the value of k for which the point (1, -2) lies on the graph of the linear equation, x – 2y + k = 0.
Solution:
∵ Point (1, -2) lies on the graph of the equation x – 2y + k = 0
∴ x = 1, y = -2 will satisfy the equation
Now substituting the value of x = 1, y = -2 in it
1-2 (-2) + k = 0
⇒  1 + 4 + k = 0
⇒  5+ k = 0 ⇒  k =-5
∴  k = -5

Hope given RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A

RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A.

Question 1.
Solution:
Steps of Constructions :
(i) Draw a line segment AB = 5cm.
(ii) With A as centre and a radius equal to more than half of AB, drawn two arcs one above and other below of AB.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q1.1
(iii) With centre B, and with same radius, draw two arcs intersecting the previously arcs at C and D respectively.
(iv) Join CD, intersecting AB at P.
Then CD is the perpendicular bisector of AB at the point P.

Question 2.
Solution:
Steps of constructions.
(i) Draw a line segment AB.
(ii) With A as centre and with small radius drawn arc cutting AB at P.
(iii) With P as centre and same radius draw another arc cutting the previous arc at Q and then R.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q2.1
(iv) Bisect arc QR at S.
(v) Join AS and produce it to X such that ∠ BAX = 90°.
(vi) Now with centres P and S and with a suitable radius, draw two arcs intersecting each other at T.
(vii) Join AT and produced it to C Then ∠BAC = 45°.
(viii) Again with centres P and T and suitable radius draw two arcs intersecting each at D.
(ix) Join AD.
AD is the bisector of ∠ BAC

Question 3.
Solution:
Steps of construction.
(i) Draw a line segment AB.
(ii) With centre A and same radius draw an arc which meets AB at P.
(iii) With centre P and same radius, draw arcs first at Q and then at R.
(iv) With centres Q and R, draw arcs intersecting each other at C intersecting the first arc at T.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q3.1

(v) Join AC
Then ∠BAC = 90°
(vi) Now with centres P and T and with some suitable radius, draw two arcs intersecting each other at L.
(vii) Join AL and produce it to D.
Then AD is the bisector of ∠ BAC.

Question 4.
Solution:
Steps of construction.
(i) Draw a line segment BC = 5cm.
(ii) With centres B and C and radius
5cm, draw two arcs intersecting each other at A.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q4.1
(iii) Join AB and AC.
Then ∆ ABC is the required equilateral triangle.

Question 5.
Solution:
We know that altitudes of equilateral triangle are equal and each angle is 60°.
Steps of construction.
(i) Draw a line XY and take a point D on it.
(ii) At D, draw a perpendicular and cut off DA = 5.4cm.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q5.1
(iii) At A draw angles of 30° on each side of AD which meet XY at B and C respectively.
Then ∆ ABC is the required triangle.

Question 6.
Solution:
Steps of construction :
(i) Draw a line segment BC = 5cm
(ii) With centre B and radius 3.8 cm draw an arc.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q6.1
(iii) With centre C and radius 2.6 cm draw another arc intersecting the first arc at A.
(iv) Join AB and AC.
Then ∆ ABC is the required triangle.

Question 7.
Solution:
Steps of construction :
(i) Draw a line segment BC = 4.7cm.
(ii) At B, draw a ray BX making an angle of 60° with BC.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q7.1
(iii) At C, draw another ray, CY making an angle of 30° which intersects the ray BX at A ,
Then ∆ ABC is the required triangle On measuring ∠ A, it is 90°.

Question 8.
Solution:
Steps of Construction :
(i) Draw a line segment QR * 5cm.
(ii) With centres Q and R and radius equal to 4.5cm, draw arcs intersecting eachother at P.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q8.1
(iii) Join PQ and PR.
Then ∆ PQR is the required triangle.

Question 9.
Solution:
We know that in an isosceles triangle, two sides are equal and so their opposite angles are also equal.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q9.1
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q9.2

Question 10.
Solution:
Steps of constructions :
(i) Draw a line segment BC = 4.5cm.
(ii) At B, draw a ray BX making an angle of 90° with BC.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q10.1
(iii) With centre C and radius 5.3 cm, draw an arc intersecting BX at A.
(iv) Join AC.
Then ∆ ABC is the required right angled triangle.

Question 11.
Solution:
Steps of constructions :
(i) Draw a line XY.
(ii) Take a point D on XY.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q11.1
(iii) Draw a perpendicular at D and cut off DA = 4.8 cm
(iv) At A, draw a line LM parallel to XY.
(v) At A, draw an angle of 30° with LM on one side and an angle of 60° with LM on other side meeting XY at B and C respectively
Then ∆ ABC is the required triangle.

Question 12.
Solution:
Steps of constructions :
(i) Draw a line segment EF = 12cm.
(ii) At E, draw a ray EX making an acute angle with EF.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q12.1
(iii)From EX,cut off 3+2+4=9 equal parts.
(iv) Join E9 F.
(v) From E5 and E3, draw lines parallel to E9 F meeting EF at C and B respectively.
(vi) With centre B and radius EB and with centre C and radius CF, draw arcs intersecting eachother at A.
(vii) Join AB and AC.
Then ∆ ABC is the required triangle.

Question 13.
Solution:
Steps of constructions :
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q13.1
(i) Draw a line segment BC = 4.5cm.
(ii) At B, draw a ray BX making an angle of 60° and cut off BD = 8cm.
(iii) Join DC.
(iv) Draw the perpendicular bisector of BD which intersects BX at A.
(v) Join AC.
Then ∆ ABC is the required triangle.

Question 14.
Solution:
Steps of Constructions :
(i) Draw a line segment BC = 5.2 cm.
(ii) At B draw a ray BX making an angle of 30°.
RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A Q14.1
(iii) From BX, cut off BD = 3.5cm.
(iv) Join DC.
(v) Draw perpendicular bisector of DC which intersects BX at A.
(vi) Join AC.
Then ∆ ABC is the required triangle.

Hope given RS Aggarwal Class 9 Solutions Chapter 12 Geometrical Constructions Ex 12A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4

RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4

Other Exercises

Question 1.
Give the geometric representations of the following equations.
(a) on the number line
(b) on the cartesian plane.
(i) x – 2
(ii) y + 3 = 0
(iii) y = 3
(iv) 2x + 9 = 0
(v) 3x – 5 = 0
Solution:
(i) x = 2
(i) on the number line
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q1.1
(ii) x = 2 is a line parallel to 7-axis at a distance of 2 units to right of y-axis.
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q1.2
(ii) y = -3 is a line parallel to x-axis at a distance of 3 units below x-axis.
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q1.3
(iii) y = 3
(i) y = 3
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q1.4
(ii) y = 3 is a line parallel to x-axis at a distance of 3 units above x-axis.
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q1.5
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q1.6
x = -4.5 is a line parallel to 7-axis at a distance of 4.5 units to left of y-axis.
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q1.7
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q1.8
(ii) x = 1\(\frac { 2 }{ 3 }\) is a line parallel to y-axis at a  distance of 1\(\frac { 2 }{ 3 }\) unit to right side of y-axis.

Question 2.
Give the geometrical representation of 2x + 13 = 0 as an equation in
(i) One variable
(ii) Two variables
Solution:
(i) In one variable,
2x + 13 = 0
⇒ 2x = – 13
⇒ x = \(\frac { -13 }{ 2 }\)
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q2.1
is a line parallel to y-axis at a distance of -6 \(\frac { 1 }{ 2 }\) units on the left side of y-axis.

Question 3.
Solve the equation 3x + 2 = x -8, and represent on
(i) the number line
(ii) the Cartesian plane.
Solution:
3x + 2 = x – 8
⇒  3x – x = -8 – 2
⇒  2x = -10
⇒  x = \(\frac { -10 }{ 2 }\) = -5
(i) on the number line s = -5
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q3.1
(ii) x = -5 is a line parallel to  y-axis at a distance of 5 knot’s left of y-axis.
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 Q3.2

Question 4.
Write the equal of the line that is parallel to x-axis and passing through the points.
(i) (0, 3)                     
(ii)  (0, -4)
(iii) (2, -5)                     
(iv)    (3, 4)
Solution:
∵  A line parallel to x-axis will be of the type y = a
∴ (i) y = 3
(ii) y = -4
(iii) y = -5 and y = 4 are equations of the lines parallel to x-axis

Question 5.
Write the equation of the line that is parallel to y-axis and passing through the points.
(i) (4, 0)                      
(ii) (-2, 0)
(iii) (3, 5)                    
(iv) (-4, -3)
Solution:
∵  A line parallel to y-axis will be of the type x = a
∴  (i) x = 4, (ii)  x = -2, x = 3 and x = -4 are the equations of the lines parallel to y-axis.

Hope given RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.