RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1

Other Exercises

Question 1.
Find the cubes of the following numbers:
(i) 7
(ii) 12
(iii) 16
(iv) 21
(v) 40
(vi) 55
(vii) 100
(viii) 302
(ix) 301
Solution:
(i) (7)3 = 7 x 7 x 7 = 343
(ii) (12)3 = 12 x-12 x 12 = 1728
(iii) (16)3 = 16 x 16 x 16 = 4096
(iv) (21)3 = 21 x 21 x 21 = 441 x 21 =9261
(v) (40)3 = 40 x 40 x 40 = 64000
(vi) (55)3 = 55 x 55 x 55 = 3025 x 55 = 166375
(vii) (100)3 = 100 x 100 x 100 =1000000
(viii)(302)3 = 302 x 302 x 302 = 91204 x 302 = 27543608
(ix) (301)3 = 301 x 301 x 301 = 90601 x 301 =27270901

Question 2.
Write the cubes of all natural numbers between 1 and 10 and verify the following statements :
(i) Cubes of all odd natural numbers are odd.
(ii) Cubes of all even natural numbers are even.
Solution:
Cubes of first 10 natural numbers :
(1)3 = 1 x 1 x 1 = 1
(2)3 = 2 x 2 x 2 = 8
(3)3 = 3 x 3 x 3 = 27
(4)3= 4 x 4 x 4 = 64
(5)3 = 5 x 5 x 5 = 125
(6)3 = 6 x 6 x 6 = 216
(7)3 = 7 x 7 x 7 = 343
(8)3 = 8 x 8 x 8 = 512
(9)3 = 9 x 9 x 9= 729
(10)3 = 10 x 10 x 10= 1000
We see that the cubes of odd numbers is also odd and cubes of even numbers is also even.

Question 3.
Observe the following pattern :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 1
Write the next three rows and calculate the value of 13 + 23 + 33 +…. + 93 + 103 by the above pattern.
Solution:
We see the pattern
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 2

Question 4.
Write the cubes of 5 natural numbers which are multiples of 3 and verify the followings :
The cube of a natural number which is a multiple of 3 is a multiple of 27′
Solution:
5 natural numbers which are multiples of 3
3,6,9,12,15.
(3)3 = 3 x 3 x 3 = 27
Which is multiple of 27
(6)3 = 6 x 6 x 6 = 216 ÷ 27 = 8
Which is multiple of 27
(9)3 = 9 x 9 x 9 = 729 + 27 = 27
Which is multiple of 27
(12)3= 12 x 12 x 12 = 1728 ÷ 27 = 64
Which is multiple of 27
(15)3 = 15 x 15 x 15 = 3375 ÷ 27 = 125
Which is multiple of 27
Hence, cube of multiple of 3 is a multiple of 27

Question 5.
Write the cubes of 5 natural numbers which are of the form 3n+ 1 (e.g.,4, 7, 10, …………) and verify the following :
‘The cube of a natural number of the form 3n + 1 is a natural number of the same form i.e. when divided by 3 it leaves the remainder 1’.
Solution:
3n + 1
Let n = 1, 2, 3, 4, 5, then
If n = 1, then 3n +1= 3 x 1+1= 3+1= 4
If n = 2, then 3n +1=3 x 2+1=6+1=7
If n = 3, then 3n + 1= 3 x 3 + 1= 9 + 1 = 10
If n = 4, then 3n + 1= 3 x 4+1 = 12 + 1= 13
If n = 5, then 3n +1=3 x 5 + 1 = 15 +1 = 16
Now
(4)3 = 4 x 4 x 4 = 64
Which is \(\frac {64 }{ 3 }\)=21, Remainder = 1
(7)3 = 7 x 7 x 7 = 343
Which is \(\frac {343 }{ 3 }\) =114, Remainder = 1
(10)3 = 10 x 10 x 10 = 1000 ÷ 3 = 333, Remainder = 1
(13)3 = 13 x 13 x 13 = 2197 ÷ 3 = 732, Remainder = 1
(16)3 = 16 x 16 x 16 = 4096 ÷ 3 = 1365, Remainder = 1
Hence cube of natural number of the form, 3n + 1, is a natural of the form 3n + 1

Question 6.
Write the cubes of 5 natural numbers of the form 3n + 2 (i.e. 5, 8, 11,……… ) and verify the following :
‘The cube of a natural number of the form 3n + 2 is a natural number of the same form i.e. when it is dividend by 3 the remainder is 2’.
Solution:
Natural numbers of the form 3n + 2, when n
is a natural number i.e. 1, 2, 3, 4, 5,………….
If n = 1, then 3n + 2 = 3 x 1+2 = 3+ 2 = 5
If n = 2, then 3n + 2 = 3 x 2 + 2 = 6 + 2 = 8
If n = 3, then 3n + 2 = 3 x 3 + 2 = 9 + 2 = 11
If n = 4, then 3n + 2 = 3 x 4 + 2 = 12 + 2 = 14
and if n = 5, then 3n + 2 = 3 x 5 + 2 = 15 + 2= 17
Now (5)3 = 5 x 5 x 5 = 125
125 + 3 = 41, Remainder = 2
(8)2 = 8 x 8 x 8 = 512 512 -s- 3 = 170, Remainder = 2
(11)3 = 11 x 11 x 11 = 1331
1331 + 3 = 443, Remainder = 2
(14)3 = 14 x 14 x 14 = 2744
2744 + 3 = 914, Remainder = 2
(17)3 = 17 x 17 x 17 = 4913
4913 = 3 = 1637, Remainder = 2
We see the cube of the natural number of the
form 3n + 2 is also a natural number of the
form 3n + 2.

Question 7.
Write the cubes of 5 natural numbers of which are multiples of 7 and verify the following :
‘The cube of a multiple of 7 is a multiple of 73′.
Solution:
5 natural numbers which are multiple of 7,are 7, 14, 21, 28, 35
(7)3 = (7)3 which is multiple of 73
(14)3 = (2 x 7)3 = 23 x 73, which is multiple of 73
(21)3 = (3 x 7)3 = 33 x 73, which is multiple of 73
(28)3 = (4 x 7)3 = 43 x 73, which is multiple of 73 (35)3 = (5 x 7)3 = 53 x 73 which is multiple of 73
Hence proved.

Question 8.
Which of the following are perfect cubes?
(i) 64
(ii) 216
(iii) 243
(iv) 1000
(v) 1728
(vi) 3087
(vii) 4608
(viii) 106480
(ix) 166375
(x) 456533
Solution:
(i) 64 = 2 x 2 x 2 x 2 x 2 x 2
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 3
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ 64 is a perfect cube
(ii) 216 = 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 4
Grouping the factors in triplets of equal factors, we see that no factor is left
216 is a perfect cube.
(iii) 243 = 3 x 3 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 5
Grouping the factors in triplets, we see that two factors 3 x 3 are left
∴ 243 is not a perfect cube.
(iv) 1000 = 2 x 2 x 2 x 5 x 5 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 6
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ 1000 is a perfect cube.
(v) 1728 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 7
Grouping the factors in triplets of the equal factors, we see that no factor is left
∴ 1728 is a perfect cube,
(vi) 3087 = 3 x 3 x 7 x 7 x 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 8
Grouping the factors in triplets of the equal factors, we see that two factor 3×3 are left
∴ 3087 is not a perfect cube.
(vii) 4608 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 9
Grouping the factors in triplets of equal factors, we see that two factors 3, 3 are left
∴ 4609 is not a perfect cube.
(viii) 106480 = 2 x 2 x 2 x 2 x 5 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 10
Grouping the factors in triplets of equal factors, we see that factors 2, 5 are left
∴ 106480 is not a perfect cube.
(ix) 166375 = 5 x 5 x 5 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 11
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ 166375 is a perfect cube.
(x) 456533 = 7 x 7 x 7 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 12
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ 456533 is a perfect cube.

Question 9.
Which of the following are cubes of even natural numbers ?
216, 512, 729,1000, 3375, 13824
Solution:
We know that the cube of an even natural number is also an even natural number
∴ 216, 512, 1000, 13824 are even natural numbers.
∴ These can be the cubes of even natural number.

Question 10.
Which of the following are cubes of odd natural numbers ?
125, 343, 1728, 4096, 32768, 6859
Solution:
We know that the cube of an odd natural number is also an odd natural number,
∴ 125, 343, 6859 are the odd natural numbers
∴ These can be the cubes of odd natural numbers.

Question 11.
What is the smallest number by which the following numbers must be multiplied, so that the products are perfect cubes ?
(i) 675
(ii) 1323
(iii) 2560
(iv) 7803
(v) 107311
(vi) 35721
Solution:
(i) 675 = 3 x 3 x 3 x 5 X 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 13
Grouping the factors in triplet of equal factors, 5 x 5 are left without triplet
So, by multiplying by 5, the triplet will be completed.
∴ Least number to be multiplied = 5
(ii) 1323 = 3 x 3 x 3 x 7 x 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 14
Grouping the factors in triplet of equal factors. We find that 7 x 7 has been left
So, multiplying by 7, we get a triplet
∴ The least number to be multiplied = 7
(iii) 2560 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 15
Grouping the factors in triplet of equal factors, 5 is left.
∴ To complete a triplet 5 x 5 is to multiplied
∴ Least number to be multiplied = 5 x 5 = 25
(iv) 7803 = 3 x 3 x 3 x 17 x 17
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 16
Grouping the factors in triplet of equal factors, we find the 17 x 17 are left
So, to complete the triplet, we have to multiply by 17
∴ Least number to be multiplied = 17
(v) 107811 = 3 x 3 x 3 x 3 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 17
Grouping the factors in triplet of equal factors, factor 3 is left
So, to complete the triplet 3 x 3 is to be multiplied
∴ Least number to be multiplied = 3 x 3 = 9
(vi) 35721 = 3 x 3 x 3 x 3 x 3 x 3 x 7 x 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 18
Grouping the factors in triplet of equal factors, we find that 7 x 7 is left
So, in order to complete the triplets, we have to multiplied by 7
∴ Least number to be multiplied = 7

Question 12.
By which smallest number must the following numbers be divided so that the quotient is a perfect cube ?
(i) 675
(ii) 8640
(iii) 1600
(iv) 8788
(v) 7803
(vi) 107811
(vii) 35721
(viii) 243000
Solution:
(i) 675 = 3 x 3 x 3 x 5 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 19
Grouping the factors in triplet of equal factors, 5 x 5 is left
5 x 5 is to be divided so that the quotient will be a perfect cube.
∴ The least number to be divided = 5 x 5 = 25
(ii) 8640 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 20
Grouping the factors in triplets of equal factors, 5 is left
∴ In order to get a perfect cube, 5 is to divided
∴ Least number to be divided = 5
(iii) 1600 = 2 x 2 x 2 x 2 x 2 x 2 x 5 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 21
Grouping the factors in triplets of equal factors, we find that 5 x 5 is left
∴ In order to get a perfect cube 5 x 5 = 25 is to be divided.
∴ Least number to be divide = 25
(iv) 8788 = 2 x 2 x 13 x 13 x 13
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 22
Grouping the factors in triplets of equal factors, we find that 2 x 2 has been left
∴ In order to get a perfect cube, 2 x 2 is to be divided
∴ Least number to be divided = 4
(v) 7803 = 3 x 3 x 3 x 17 x 17
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 23
Grouping the factors in triplets of equal factors, we see that 17 x 17 has been left.
So, in order to get a perfect cube, 17 x 17 is be divided
∴ Least number to be divided = 17 x 17 = 289
(vi) 107811 = 3 x 3 x 3 x 3 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 24
Grouping the factors in triplets of equal factors, 3 is left
∴ In order to get a perfect cube, 3 is to be divided
∴ Least number to be divided = 3
(vii) 35721 = 3 x 3 x 3 x 3 x 3 x 3 x 7 x 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 25
Grouping the factors in triplets of equal factors, we see that 7 x 7 is left
So, in order to get a perfect cube, 7 x 7 = 49 is to be divided
∴ Least number to be divided = 49
(viii) 243000 = 2 x 2 x 2 x 3 x 3 x 3 x 3 x 3 x 5 x 5 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 26
Grouping the factors in triplets of equal factors, 3 x 3 is left
∴ By dividing 3 x 3, we get a perfect cube
∴ Least number to be divided = 3 x 3=9

Question 13.
Prove that if a number is trebled then its cube is 27 times the cube of the given number.
Solution:
Let x be the number, then trebled number of x = 3x
Cubing, we get:
(3x)3 = (3)3 x3 = 27x3
27x3 is 27 times the cube of x i.e., of x3

Question 14.
What happenes to the cube of a number if the number is multiplied by
(i) 3 ?
(ii) 4 ?
(iii) 5 ?
Solution:
number (x)3 = x3
(i) If x is multiplied by 3, then the cube of
∴ (3x)3 = (3)3 x x3 = 27x3
∴ The cube of the resulting number is 27 times of cube of the given number
(ii) If x is multiplied by 4, then the cube of
(4x)3 = (4)3 x x3 = 64x3
∴ The cube of the resulting number is 64 times of the cube of the given number
(ii) If x is multiplied by 5, then the cube of
(5x)3 = (5)3 x x3 = 125x3
∴ The cube of the resulting number is 125 times of the cube of the given number

Question 15.
Find the volume of a cube, one face of which has an area of 64 m2.
Solution:
Area of one face of a cube = 64 m2
∴ Side (edge) of cube = √64
= √64 = 8 m
∴ Volume of the cube = (side)3 = (8 m)3 = 512 m3

Question 16.
Find the volume of a cube whose surface area is 384 m2.
Solution:
Surface area of a cube = 384 m2 Let side = a
Then 6a2 = 384 ⇒ a2 = \(\frac {384 }{ 6 }\)= 64 = (8)2
∴ a = 8 m
Now volume = a3 = (8)3 m3 = 512 m3

Question 17.
Evaluate the following :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 27
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 28
Question 18.
Write the units digit of the cube of each of the following numbers :
31,109,388,833,4276,5922,77774,44447, 125125125.
Solution:
We know that if unit digit of a number n is
= 1, then units digit of its cube = 1
= 2, then units digit of its cube = 8
= 3, then units digit of its cube = 7
= 4, then units digit of its cube = 4
= 5, then units digit of its cube = 5
= 6, then units digit of its cube = 6
= 7, then the units digit of its cube = 3
= 8, then units digit of its cube = 2
= 9, then units digit of its cube = 9
= 0, then units digit of its cube = 0
Now units digit of the cube of 31 = 1
Units digit of the cube of 109 = 9
Units digits of the cube of 388 = 2
Units digits of the cube of 833 = 7
Units digits of the cube of 4276 = 6
Units digit of the cube of 5922 = 8
Units digit of the cube of 77774 = 4
Units digit of tl. cube of 44447 = 3
Units digit of the cube of 125125125 = 5

Question 19.
Find the cubes of the following numbers by column method :
(i) 35
(ii) 56
(iii) 72
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 29
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 30

Question 20.
Which of the following numbers are not perfect cubes ?
(i) 64
(ii) 216
(iii) 243
(iv) 1728
Solution:
(i) 64 = 2 x 2 x 2 X 2 x 2 x 2
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 31
Grouping the factors in triplets, of equal factors, we see that no factor is left
∴ 64 is a perfect cube.
(ii) 216 = 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 32
Grouping the factors in triplets, of equal factors, we see that no factor is left
∴ 216 is a perfect cube.
(iii) 243 = 3 x 3 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 33
Grouping the factors in triplets, of equal factors, we see that 3 x 3 are left
∴ 243 is not a perfect cube.
(iv) 1728 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 34
Grouping the factors m triplets, of equal factors, we see that no factor is left.
∴ 1728 is a perfect cube.

Question 21.
For each of the non-perfect cubes, in Q. 20, find the smallest number by which it must be
(a) multiplied so that the product is a perfect cube.
(b) divided so that the quotient is a perfect cube.
Solution:
In qustion 20, 243 is not a perfect cube and 243 = 3 x 3 x 3 x 3 x 3
Grouping the factors in triplets, of equal factors, we see that 3 x 3 is left.
(a) In order to make it a perfect cube, 3 is to be multiplied which makes a triplet.
(b) In order to make it a perfect cube, 3 x 3 or 9 is to be divided.

Question 22.
By taking three different values of n verify the truth of the following statements :
(i) If n is even, then n3 is also even.
(ii) If n is odd, then n3 is also odd.
(iii) If n leaves remainder 1 when divided by 3, then it3 also leaves 1 as remainder when divided by 3.
(iv) If a natural number n is of the form 3p + 2 then n3 also a number of the same type.
Solution:
(i) n is even number.
Let n = 2, 4, 6 then
(a) n3 = (2)3 = 2 x 2 x 2 = 8, which is an even number.
(b) (n)3= (4)3 = 4 x 4 x 4 = 64, which is an even number.
(c) (n)3 = (6)3 = 6 x 6 x 6 = 216, which is an even number.

(ii) n is odd number.
Letx = 3, 5, 7
(a) (n)3 = (3)3 = 3 x 3 x 3 = 27, which is an odd number.
(b) (n)3 = (5)3 = 5 x 5 x 5 = 125, which is an odd number.
(c) (n)3 = (7)3 = 7 x 7 x 7 = 343, which is an odd number.

(iii) If n leaves remainder 1 when divided by 3, then n3 is also leaves 1 as remainder,
Let n = 4, 7, 10 If n = 4,
then «3 = (4)3 = 4 x 4 x 4 = 64
= 64 + 3 = 21, remainder = 1
If n = 7, then
n3 = (7)3 = 7 x 7 x 7 = 343
343 + 3 = 114, remainder = 1
If n – 10, then
(n)3 = (10)3 = 10 x 10 x 10 = 1000
1000 + 3 = 333, remainder = 1

(iv) If the natural number is of the form 3p + 2, then n3 is also of the same type
Let p =’1, 2, 3, then
(a) If p = 1, then
n = 3p + 2 = 3 x 1+2=3+2=5
∴ n3 = (5)3 = 5 x 5 x 5 = 125
125 = 3 x 41 + 2 = 3p +2

(b) If p = 2, then
n = 3p + 2 = 3 x 2 + 2 = 6 + 2 = 8
∴ n3 = (8)3 = 8 x 8 x 8 = 512
∴ 512 = 3 x 170 + 2 = 3p + 2

(c) If p = 3, then
n = 3p + 2 = 3 x 3 + 2 = 9 + 2 = 11
∴ n3 = (11)3 = 11 x 11 x 11 = 1331
and 1331 =3 x 443 + 2 = 3p + 2
Hence proved.

Question 23.
Write true (T) or false (F) for the following statements :
(i) 0 392 is a perfect cube.
(ii) 8640 is not a perfect cube.
(iii) No cube can end with exactly two zeros.
(iv) There is no perfect cube which ends in 4.
(v) For an integer a, a3 is always greater than a> b2
(vi) If a and b are integers such that a> b2 , then a3 > b3.
(x) If a2 ends in an even number of zeros, then a ends in an odd number of zeros.
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 35
∵ 5 is left.
(iii)True : A number ending three zeros can be a perfect cube.
(iv) False : v (4)3 = 4 x 4 x 4 = 64, which ends with 4.
(v) False : If n is a proper fraction, it is not possible.
(vi) False : It is not true if a and b are proper fraction.
(vii) True.
(viii) False : as a2 ends in 9, then a3 does not necessarily ends in 7. It ends in 3 also.
(ix) False : it is not necessarily that a3 ends in 25 it can end also in 75.
(x) False : If a2 ends with even zeros, then a3 will ends with odd zeros but of multiple of 3.

 

Hope given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C

RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C.

Other Exercises

Question 1.
Solution:
Radius of base (r) = 35cm
and height (h) = 84cm.
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q1.1
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q1.2

Question 2.
Solution:
Height of cone (h) = 6cm
Slant height (l) = 10cm.
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q2.1

Question 3.
Solution:
Volume of right circular cone = (100 π) cm3
Height (h) = 12cm.
Let r be the radius of the cone
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q3.1

Question 4.
Solution:
Circumference of the base = 44cm
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q4.1
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q4.2

Question 5.
Solution:
Slant height of the cone (l) = 25cm
Curved surface area = 550 cm2
Let r be the radius
πrl = curved surface area
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q5.1

Question 6.
Solution:
Radius.of base (r) = 35cm.
Slant height (l) = 37cm.
We know that
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q6.1

Question 7.
Solution:
Curved surface area = 4070 cm2
Diameter of the base = 70cm
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q7.1

Question 8.
Solution:
Radius of the conical tent = 7m
and height = 24 m.
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q8.1

Question 9.
Solution:
Radius of the first cone (r) = 1.6 cm.
and height (h) = 3.6 cm.
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q9.1

Question 10.
Solution:
Ratio in their heights =1:3
and ratio in their radii = 3:1
Let h1,h2 he their height and r1,r2 be their radii, then
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q10.1
The ratio between their volumes is 3:1
hence proved

Question 11.
Solution:
Diameter of the tent = 105m
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q11.1
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q11.2

Question 12.
Solution:
No. of persons to be s accommodated =11
Area to be required for each person = 4m2
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q12.1

Question 13.
Solution:
Height of the cylindrical bucket (h) = 32cm
Radius (r) = 18cm
Volume of sand filled in it = πr2h
= π x 18 x 18 x 32 cm3
= 10368π cm3
Volume of conical sand = 10368 π cm3
Height of cone = 24 cm
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q13.1

Question 14.
Solution:
Let h be the height and r be the radius of the cylinder and cone.
Curved surface area of cylinder = 2πrh
and curved surface area of cone = πrl
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q14.1
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q14.2

Question 15.
Solution:
Diameter of the pillar = 20cm
Radius (r) = \(\frac { 20 }{ 2 } \) = 10cm
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q15.1
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q15.2

Question 16.
Solution:
Height of the bigger cone (H) = 30cm
By cutting a small cone from it, then volume of smaller cone = \(\frac { 1 }{ 27 } \) of volume of big cone
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q16.1
Let radius and height of the smaller cone be r and h
and radius and height of the bigger cone be R and H.
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q16.2
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q16.3
Hence at the height of 20cm from the base it was cut off. Ans.

Question 17.
Solution:
Height of the cylinder (h) = 10cm.
Radius (r) = 6cm.
Height of the cone = 10cm
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q17.1
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q17.2

Question 18.
Solution:
Diameter of conical vessel = 40cm
Radius (r) = \(\frac { 40 }{ 2 } \) = 20cm
and depth (h) = 24cm.
.’. Volume = \(\frac { 1 }{ 3 } \) πr2h
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q18.1
RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C Q18.2

Hope given RS Aggarwal Class 9 Solutions Chapter 13 Volume and Surface Area Ex 13C are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles VSAQS

RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles VSAQS

Other Exercises

Question 1.
How many least number of distinct points determine a unique line?
Solution:
At least two distinct points determine a unique line.

Question 2.
How many lines can be drawn through both of the given points?
Solution:
Through two given points, one line can be drawn.

Question 3.
How many lines can be drawn through a given point?
Solution:
Through a given point, infinitely many lines can be drawn.

Question 4.
in how many points two distinct lines can intersect?
Solution:
Two distinct lines can intersect at the most one point.

Question 5.
In how many points a line, not in a plane, can intersect the plane?
Solution:
A line not in a plane, can intersect the plane at one point.

Question 6.
In how many points two distinct planes can intersect?
Solution:
Two distinct planes can intersect each other at infinite number of points.

Question 7.
In how many lines two distinct planes can intersect?
Solution:
Two distinct planes intersect each other in one line.

Question 8.
How many least number of distinct points determine a unique plane?
Solution:
Three non-collinear points can determine a unique plane.

Question 9.
Given three distinct points in a plane, how many lines can be drawn by joining them?
Solution:
Through three given points, one line can be drawn of they are collinear and three if they are non-collinear.

Question 10.
How many planes can be made to pass through a line and a point not on the line?
Solution:
Only one plane can be made to pass through a line and a point not on the line.

Question 11.
How many planes can be made to pass through two points?
Solution:
Infinite number of planes can be made to pass through two points.

Question 12.
How many planes can be made to pass through three distinct points?
Solution:
Infinite number of planes can be made of they are collinear and only one plane, if they are non-collinear.

Hope given RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules

NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules

These Solutions are part of NCERT Exemplar Solutions for Class 9 Science . Here we have given NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules

Question 1.
Which of the following correctly represents 360 g of water ?
(i) 2 moles of H2O
(ii) 20 moles of water
(iii) 6.022 x 1023 molecules of water
(iv) 1.2044 x 1025 molecules of water
(a) (i)
(b) (i) and (iv)
(c) (ii) and (iii)
(d) (ii) and (iv).
Mass of water
Correct Answer:
(d)
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 1

More Resources

Question 2.
Which of the following statements is not true about atoms ?
(a) Atoms are not able to exist independently
(b) Atoms are the basic units from which molecules and ions are formed
(c) Atoms are always neutral in nature
(d) Atoms aggregate in large numbers to form the matter that we can see, feel or touch.
Correct Answer:
(a) Atoms of inert gas elements can exist independently. However, atoms of all other elements cannot exist independently.

Question 3.
The chemical symbol for nitrogen gas is :
(a) Ni
(b) N2
(c) N+
(d) N
Correct Answer:
(b).

Question 4.
The chemical symbol for sodium is :
(a) So
(b) Sd
(c) NA
(d) Na.
Correct Answer:
(d ).

Question 5.
Which of the following would weigh the maximum ?
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 2
Correct Answer:
(c).

(a) 0.2 x 342 g = 68.4 g
(b) 2 x 44 g = 88 g
(c) 2 x 100 g = 200 g
(d) 10 x 18 g = 180 g.

Question 6.
Which of the following has maximum number of atoms ?
(a) 18 g of H2O
(b) 18 g of O2
(c) 18 g of CO2
(d) 18 g of CH4.
Correct Answer:
(d).
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 3

Question 7.
Which of the following contains maximum number of molecules ?
(a) 1g CO2
(b) 1g N2
(c) 1g H2
(d) 1g CH4.
Correct Answer:
(c).
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 4

Question 8.
Mass of one atom of oxygen is :
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 5
Correct Answer:
(a).

Question 9.
3.42 g of sucrose are dissolved in 18 g of water in a beaker. The number of oxygen atoms in the solution are
(a) 6.68 x 1023
(b) 6.09 x 10222
(c) 6.022 x 1023
(d) 6.022 x 1021.
Correct Answer:
(a).
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 6
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 7

Question 10.
A change in the physical state can be brought about :
(a) only when energy is given to the system
(b) only when energy is taken out from the system
(c) when energy is either given to, or taken out from the system
(d) without any energy change.
Correct Answer:
(c).

Short Answer Questions

Question 11.
Which of the following represents a correct chemical formula ? Name it.
(a) CaCl
(b) BiPO4
(c) NaSO4
(d) NaS.
Answer:
(b). Both Bi and PO4 are trivalent ion (Bi3+ and PO43- ).
It is known as bismuth phosphate.

Question 12.
Write the chemical formulae for the following compounds :
(a) Copper (II) bromide
(b) Aluminium (III) nitrate
(c) Calcium (II) phosphate
(d) Iron (III) sulphide
(e) Mercury (II) chloride
(f) Magnesium (II) acetate.
Answer:
(a) CuBr2
(b) Al(NO3)3
(c) Ca3(PO4)2
(d) Fe2S3
(e) HgCl2
(f) Mg(CH2COO)2.

Question 13.
Write the chemical formulae of all the compounds that can be formed by the combination of following ions :
Cu2+, Na+, Fe3+, Cl, SO42-, PO43- .
Answer:
For Cu2+ ion : CuCl2, CuSO4, Cu3(PO4)2
For Na+ ion : NaCl, Na2SO4, Na3PO4
For Fe3+ um :FeCl3, Fe2(SO4)3, FePO4.

Question 14.
Write the cations and anions present (if any) in the following compounds :
(a) CH3COONa
(b) NaCl
(c) H2
(d) NH4NO3.
Answer:
(a) CH3O (anion), Na+ (cation)
(b) Na+ (cation), Cl (anion)
(c) Molecular compound (no ions)
(d) NH4+(cation), NO3 (anion).

Question 15.
Give the formulae of the compounds formed from the following sets of elements :
(a) Calcium and fluorine
(b) Hydrogen and sulphur
(c) Nitrogen and hydrogen
(d) Carbon and chlorine
(e) Sodium and oxygen
(f) Carbon and oxygen.
Answer:
(a) CaF2
(b) H2S
(c) NH3
(d) CCl4
(e) Na2O
(f) CO and CO2.

Question 16.
Which of the following symbols of elements are incorrect ? Give their correct symbols :
(a) Cobalt Co
(b) Carbon C
(c) Aluminium Al
(d) Helium He
(e) Sodium So
Answer:
(a) Incorrect; correct symbol is Co
(b) Incorrect; correct symbol is C
(c) Incorrect; correct symbol is Al
(e) Incorrect; correct symbol is Na.

Question 17.
Give the chemical formulae for the following compounds and compute the ratio by mass of the combining elements in each one of them.
(a) Ammonia
(b) Carbon monoxide
(c) Hydogen chloride
(d) Aluminium fluoride
(e) Magnesium sulphide.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 8

Question 18.
State the number of atoms present in each of the following chemical species :
(a) CO32-
(b) PO43-
(c) P2O5
(d) CO.
Answer:
(a) Four
(b) Five
(c) Seven
(d) Two.

Question 19.
What is the fraction of mass of water (H2O) due to neutrons ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 9

Question 20.
Does the solubility of a substance change with temperature ? Explain with the help of an example.
Answer:
In most of the cases, the solubility of a substance in a particular solvent such as water increases with the rise in temperature. For example, more of sugar can dissolve in a particular volume of water by increasing the temperature. .

Question 21.
Classify each of the following on the basis of their atomicity.
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 10
Answer:
(a) 2
(b) 3
(c) 3
(d) 8
(e) 4
(f) 4
(g) 14
(h) 3
(i) 2
(j) 5
(k) 1
(l) 1.

Question 22.
You are provided with a fine white coloured powder which is either sugar or salt. How would you identify it without tasting ?
Answer:
Dissolve both sugar and salt separately in water taken in two glass beakers. Pass electric current through both. In case, solution is conducting, it represents a salt dissolved in water. If it fails to conduct electricity, it represents a sugar solution.

Question 23.
Calculate the number of moles of magnesium present in a magnesium ribon weighing 12 g. Molar atomic mass of magnesium is 24 g mol-1.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 11

Long Answer Questions

Question 24.
Verify by calculating that :
(a) 5 moles of CO2 and 5 moles of H2O do not have the same mass.
(b) 240 g of calcium and 240 g magnesium elements have mole ratio of 3 : 5.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 12

Question 25.
Find the ratio by mass of the combining elements in the following compounds :
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 13
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 14

Question 26.
Calcium chloride when dissolved in water dissociates into its ions according to the following equation.
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 15
Calculate the number of ions obtained from CaCl2 when 222 g of it is dissolved in water.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 16

Question 27.
The difference in the mass of 100 moles each of sodium atoms and sodium ions is 5.48002 g. Compute the mass of an electron.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 17

Question 28.
Cinnabar (HgS) is a prominent ore of mercury. How many grams of mercury are present in 225 g of pure HgS ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 18

Question 29.
The mass of one steel screw is 4.11 g. Find the mass of one mole of these steel screws. Compare this value with the mass of the Earth (5.98 x 1024 kg). Which one of the two is heavier and by how many times ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 19

Question 30.
A sample of vitamin C is known to contain 2.58 x 1024 oxygen atoms. How many moles of oxygen atoms are present in the sample ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 20

Question 31.
Raunak took 5 moles of carbon atoms in a container and Krish also took 5 moles of sodium atoms in another container of same weight.
(a) Whose container is heavier ?
(b) Whose container has more number of atoms ?
Answer:
(a) Molar atomic mass of carbon = 12 g
No. of moles of carbon carried by Raunak = 5
Mass of 5 moles of carbon = (12 x 5) = 60 g
Molar atomic mass of sodium = 23 g
No. of moles of sodium carried by Krish = 5
Mass of 5 moles of sodium = (23 x 5) = 115 g
This shows that the container carried by Krish is heavier.
(b) Since both the containers have same number of moles, the number of atoms present in these containers are also same i.e. 5 x NA atoms.

Question 32.
Fill in the missing data in the given table
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 21
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 22

Question 33.
The visible universe is estimated to contain 1022 stars. How many moles of stars are present in the visible universe ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 23

Question 34.
What is the SI prefix for each of the following multiples and submultiples of a unit ?
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 42
Answer:
(a) kilo
(b) deci
(c) centri
(d) micro
(e) nano
(f) pico

Question 35.
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 25
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 26

Question 36.
Compute the difference in masses of 103 moles each of magnesium atoms and magnesium ions.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 27

Question 37.
Which has more number of atoms ?
100 g of N2 or 100 g of NH3
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 28
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 29

Question 38.
Compare the number of ions present in 5.85 g of sodium chloride.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 30

Question 39:
A gold sample contains 90% of gold and the rest copper. How many atoms of gold are present in one gram of this sample of gold ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 31

Question 40.
What are ionic and molecular compounds ? Give examples.
Answer:
Simple ionic compounds are of binary nature. It means that both the positive and negative ions have one atom only. The symbols of these ions are written side by side with their valencies at their bottom. A common factor if any, is removed to get a simple ratio of the valencies of the combining atoms. The criss-cross method is then applied to arrive at the final chemical formula of the compound. Let us write the formulae of a few simple ionic compounds. For example,
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 32
The molecular compounds also called covalent compounds. The compounds listed above are heteroatomic in nature. It means that different elements partici­pate in these compounds. They may be homoatomic also which means that these are formed from the atoms of the same element. For example, hydrogen molecule (H2), chlorine molecule (Cl2), oxygen molecule (02), nitrogen mol­ecule (N2), etc.
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 33

Question 41.
Compute the difference in masses of one mole each of aluminium atoms and one mole of its ions. (Mass of an electron is 9.1 x 10-28 g). Which one is heavier ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 34

Question 42.
A silver ornament of mass ‘m’ gram is polished with gold equivalent to 1% of the mass of silver. Compute the ratio of the number of atoms of gold and silver in the ornament.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 35
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 36

Question 43.
A sample of ethane (C2H6) gas has the same mass as 1.5 x 1020 molecules of methane (CH4). How many C2H6 molecules does the sample of gas contain ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 37

Question 44.
Fill in the blanks
(a) In a chemical reaction, the sum of the masses of the reactants and products remains unchanged. This is called ………….. .
(b) A group of atoms carrying a fixed charge on them is called ………….. .
(c) The formula unit mass of Ca3(PO4)2 is ………….. .
(d) Formula of sodium carbonate is ………… and that of ammonium sulphate is …………… .
Answer:
(a) Law of conservation of mass
(b) Polyatomic ions
(c) 3 x Atomic mass of Ca + 2 x Atomic mass of P + 8 x Atomic mass of O.
3 x 40 + 2 x 31 + 8 x 16 = 120 + 62 + 128 = 310 u
(d) Na2CO3, (NH4)2SO4.

Question 45.
Complete the following crossword puzzle by using the name of the chemical elements. Use the data given in table.
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 38
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 39
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 40

Question 46.
Write the formulae for the following and calculate the molecular mass for each one of them.
(a) Custic potash
(b) Baking powder
(c) Lime stone
(d) Caustic soda
(e) Ethanol
(f) Common salt.
Answer:
(a) KOH = 39 + 16 + 1 = 56 u
(b) NaHCO3 = 23 + 1 + 12 + 3 x 16 = 84 u
(c) CaCO3 = 12 + 12 x 3 x 16 = 100 u
(d) NaOH = 23 + 16 + 1 = 40 u
(e) C2H5OH = 2 x 12 + 6 x 1 + 16 = 46 u
(f) NaCl = 23 + 35.5 = 58.5 u

Question 47.
In photosynthesis, 6 molecules of carbon dioxide combine with an equal number of water molecules through a complex sereies of reactions to give a molecule of glucose having a molecular formula C6H12O6 and a molecule of oxygen with molecular formula O2. How many grams of water would be required to produce 18 g of glucose ? Compute the volume of water so consumed assuming the density of water to be 1 g cm-3.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules image - 41

Hope given NCERT Exemplar Solutions for Class 9 Science Chapter 3 Atoms and Molecules are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles Ex 9.1

RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles Ex 9.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles Ex 9.1

Other Exercises

Question 1.
Define the following tenns :
(i) Line segment
(ii) Collinear points
(iii) Parallel lines  
(iv) Intersecting lines
(v) Concurrent lines   
(vi) Ray
(vii) Half-line.
Solution:
(i) A line segment is a part of a line which lies between two points on it and it is denoted as \(\overline { AB }\)   or only by AB. It has two end points and is measureable.
RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles Ex 9.1 Q1.1
(ii) Three or more points which lie on the same straight line, are called collinear points.
(iii) Two lines which do not intersect each other at any point are called parallel lines.
(iv) If two lines have one point in common, are called intersecting lines.
(v) If two or more lines which pass through a common point are called concurrent lines.
(vi) Ray : A part of a line which has one end point.
(vii) Half line : If A, B, C, be the points on a line l, such that A lies between B and C and we delete the point from line l, two parts of l that remain are each called a half-line.
RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles Ex 9.1 Q1.2

Question 2.
(i) How many lines can pass through a given point?
(ii) In how many points can two distinct lines at the most intersect?
Solution:
(i) Infinitely many lines can pass through a given point.
(ii) Two distinct lines at the most intersect at one point.

Question 3.
(i) Given two points P and Q, find how many line segments do they determine?
(ii) Name the line segments determined by the three collinear points P, Q and R.
Solution:
(i) Only one line segment can be drawn through two given points P and Q.
(ii) Three collinear points P, Q and R, three lines segments determine : \(\overline { PQ }\) , \(\overline { QR }\)  and \(\overline { PR }\) .

Question 4.
Write the truth value (T/F) of each of the following statements:
(i) Two lines intersect in a point.
(ii) Two lines may intersect in two points.
(iii) A segment has no length.
(iv) Two distinct points always determine a line.
(v) Every ray has a finite length.
(vi) A ray has one end-point only.
(vii) A segment has one end-point only.
(viii) The ray AB is same as ray BA.
(ix) Only a single line may pass through a given point.
(x) Two lines are coincident if they have only one point in common.
Solution:
(i)  False : As two lines do not intersect also any a point.
(ii) False : Two lines intersect at the most one point.
(iii) False : A line segment has definitely length.
(iv) True.
(v) False : Every ray has no definite length.
(vi) True.
(vii) False : A segment has two end point.
(viii)False : Rays AB and BA are two different rays.
(ix) False : Through a given point, infinitely many lines can pass.
(x) False : Two lines are coincident of each and every points coincide each other.

Question 5.
In the figure, name the following:
RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles Ex 9.1 Q5.1
RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles Ex 9.1 Q5.2
(i) Five line segments.
(ii) Five rays.
(iii) Four collinear points.
(iv) Two pairs of non-intersecting line segments.
Solution:
From the given figure,
(i) Five line segments are AC, PQ, PR, RS, QS.
(ii) Five rays : \(\xrightarrow { PA }\)  , \(\xrightarrow { RB }\)  , \(\xrightarrow { PB }\)  , \(\xrightarrow { CS }\)  , \(\xrightarrow { DS }\)  .
(iii) Four collinear points are : CDQS, APR, PQL, PRB.
(iv) Two pairs of non-intersecting line segments an AB and CD, AP and CD, AR and CS, PR and QS.

Question 6.
Fill in the blanks so as to make the following statements true:
(i) Two distinct points in a plane determine a _____ line.
(ii) Two distinct_____ in a plane cannot have more than one point in common.
(iii) Given a line and a point, not on the line, there is one and only _____  line which passes through the given point and is_____ to the given line.
(iv) A line separates a plane into ____ parts namely the____  and the____  itself.
Solution:
(i) Two distinct points in a plane determine a unique line.
(ii) Two distinct lines in a plane cannot have more than one point in common.
(iii) Given a line and a point, not on the line, there is one and only perpendicular line which passes through the given point and is perpendicular to the given line.
(iv) A line separates a plane into three parts namely the two half planes, and the one line itself.

 

Hope given RD Sharma Class 9 Solutions Chapter 9 Triangle and its Angles Ex 9.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.