HOTS Questions for Class 9 Science Chapter 4 Structure of the Atom

HOTS Questions for Class 9 Science Chapter 4 Structure of the Atom

These Solutions are part of HOTS Questions for Class 9 Science. Here we have given HOTS Questions for Class 9 Science Chapter 4 Structure of the Atom

Question 1.
Both helium (He) and beryllium (Be) have two valence electrons. Whereas He represents a noble gas element, Be does not. Assign reason.
Answer:
The element He (Z = 2) has two electrons present in the only shell i.e., K-shell. Since this shell can have a maximum of two electrons only therefore, He is a noble gas element. The element Be (Z = 4) has electronic configuration as : 2, 2. Although the second shell has also two electrons but it is not complete. It can still accommodate six more electrons. Therefore, the element beryllium does not represent a noble gas element.

More Resources

Question 2.
Study the data given below and answer the questions which follow :
HOTS Questions for Class 9 Science Chapter 4 Structure of the Atom image - 1

  1. Write the mass number and atomic number of the particles A, B, C and D.
  2. Which represent a pair of isotopes ?

Answer:

  1. Particle A : Mass number = 7 ; Atomic number = 3
    Particle B : Mass number = 17 ; Atomic number = 9
    Particle C : Mass number =16, Atomic number = 8
    Particle D : Mass number =18, Atomic number = 8
  2. Particles C and D represent a pair of isotopes since they have same atomic number.

Question 3.
Which of the two will be chemically more reactive ; element X with atomic number 17 or element Y with atomic number 16 ?
Answer:
The electronic configuration of the two elements are as follows :
X(Z = 16): K (2), L(8), M(6) ;
Y(Z = 17): K(2), L(8), M(7)
The element X needs two electrons in the M shell to have the noble gas configuration of element, Ar (Z = 18). However, the element Y needs only one electron to achieve this. This means that the element Y has a greater urge or desire to take up one electron from an outside atom. It is therefore, more reactive than the element X which needs two electrons.

Question 4.
The number of protons, neutrons and electrons in particles from A to E are given below :
HOTS Questions for Class 9 Science Chapter 4 Structure of the Atom image - 2

  1. Which one is a cation ?
  2. Which one is an anion ?
  3. Which represent pair of isotopes ?

Answer:

  1. B is a monovalent cation (B+)
  2. E is a monovalent anion (E)
  3. A and D represent pair of isotopes.

Question 5.
An atom of an element has three electrons in the third shell which is the outermost shell. Write

  1. the electronic configuration
  2. the atomic number
  3. number of protons
  4. valency
  5. the name of the element
  6. its nature whether metal or non-metal. (CBSE 2012)

Answer:
The third shell is M shell. If the atom of the element has three electrons in the third shell, this means that K and L shells are already filled.

  1. Electronic configuration : 2, 8, 3.
  2. Atomic number = No. of electrons =13
  3. Number of protons = No. of electrons =13
  4. Valency of the element = 3
  5. The element with Z = 13 is aluminium (Al)
  6. It is a metal.

Hope given HOTS Questions for Class 9 Science Chapter 4 Structure of the Atom are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3

Other Exercises

Question 1.
In the figure, lines l1 and l2 intersect at O, forming angles as shown in the figure. If x = 45, find the values of y, z and n.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q1.1
Solution:
Two lines l1 and l2 intersect each other at O ∠x = 45°
∵ ∠z = ∠x (Vertically opposite angles)
= 45°
But x + y = 180° (Linear pair)
⇒45° + y= 180°
⇒ y= 180°-45°= 135°
But u = y (Vertically opposite angles)
∴ u = 135°
Hence y = 135°, z = 45° and u = 135°

Question 2.
In the figure, three coplanar lines intersect at a point O, forming angles as shown in the figure. Find the values of x, y, z and u.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q2.1
Solution:
Three lines AB, CD and EF intersect at O
∠BOD = 90°, ∠DOF = 50°
∵ AB is a line
∴ ∠BOD + ∠DOF + FOA = 180°
⇒ 90° + 50° + u = 180°
⇒ 140° + w = 180°
∴ u= 180°- 140° = 40°
But x = u (Vertically opposite angles)
∴ x = 40°
Similarly, y = 50° and z = 90°
Hence x = 40°, y = 50°, z = 90° and u = 40°

Question 3.
In the figure, find the values of x, y and z.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q3.1
Solution:
Two lines l1 and l2 intersect each other at O
∴ Vertically opposite angles are equal,
∴ y = 25° and x = z
Now 25° + x = 180° (Linear pair)
⇒ x= 180°-25°= 155°
∴ z = x = 155°
Hence x = 155°, y = 25°, z = 155°

Question 4.
In the figure, find the value of x.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q4.1
Solution:
∵ EF and CD intersect each other at O
∴ Vertically opposite angles are equal,
∴ ∠1 = 2x
AB is a line
3x + ∠1 + 5x = 180° (Angles on the same side of a line)
⇒ 3x + 2x + 5x = 180°
⇒ 10x = 180° ⇒ x = \(\frac { { 180 }^{ \circ } }{ 10 }\)  = 18°
Hence x = 18°

Question 5.
If one of the four angles formed by two intersecting lines is a right angle, then show that each of the four angles is a right angle.
Solution:
Given : Two lines AB and CD intersect each other at O. ∠AOC = 90°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q5.1
To prove: ∠AOD = ∠BOC = ∠BOD = 90°
Proof : ∵ AB and CD intersect each other at O
∴ ∠AOC = ∠BOD and ∠BOC = ∠AOD (Vertically opposite angles)
∴ But ∠AOC = 90°
∴ ∠BOD = 90°
∴ ∠AOC + ∠BOC = 180° (Linear pair)
⇒ 90° + ∠BOC = 180°
∴ ∠BOC = 180° -90° = 90°
∴ ∠AOD = ∠BOC = 90°
∴ ∠AOD = ∠BOC = ∠BOD = 90°

Question 6.
In the figure, rays AB and CD intersect at O.
(i) Determine y when x = 60°
(ii) Determine x when y = 40°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q6.1
Solution:
In the figure,
AB is a line
∴ 2x + y = 180° (Linear pair)
(i) If x = 60°, then
2 x 60° + y = 180°
⇒ 120° +y= 180°
∴ y= 180°- 120° = 60°
(ii) If y = 40°, then
2x + 40° = 180°
⇒ 2x = 180° – 40° = 140°
⇒ x= \(\frac { { 140 }^{ \circ } }{ 2 }\)  =70°
∴ x = 70°

Question 7.
In the figure, lines AB, CD and EF intersect at O. Find the measures of ∠AOC, ∠COF, ∠DOE and ∠BOF.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q7.1
Solution:
Three lines AB, CD and EF intersect each other at O
∠AOE = 40° and ∠BOD = 35°
(i) ∠AOC = ∠BOD (Vertically opposite angles)
= 35°
AB is a line
∴ ∠AOE + ∠DOE + ∠BOD = 180°
⇒ 40° + ∠DOE + 35° = 180°
⇒ 75° + ∠DOE = 180°
⇒ ∠DOE = 180°-75° = 105°
But ∠COF = ∠DOE (Vertically opposite angles)
∴ ∠COF = 105°
Similarly, ∠BOF = ∠AOE (Vertically opposite angles)
⇒ ∠BOF = 40°
Hence ∠AOC = 35°, ∠COF = 105°, ∠DOE = 105° and ∠BOF = 40°

Question 8.
AB, CD and EF are three concurrent lines passing through the point O such that OF bisects ∠BOD. If ∠BOF = 35°, find ∠BOC and ∠AOD.
Solution:
AB, CD and EF intersect at O. Such that OF is the bisector of
∠BOD ∠BOF = 35°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q8.1
∵ OF bisects ∠BOD,
∴ ∠DOF = ∠BOF = 35° (Vertically opposite angles)
∴ ∠BOD = 35° + 35° = 70°
But ∠BOC + ∠BOD = 180° (Linear pair)
⇒ ∠BOC + 70° = 180°
⇒ ∠BOC = 180°-70°= 110°
But ∠AOD = ∠BOC (Vertically opposite angles)
= 110°
Hence ∠BOC = 110° and ∠AOD =110°

Question 9.
In the figure, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q9.1
Solution:
In the figure, AB and CD intersect each other at O
∠AOC + ∠BOE = 70°
∠BOD = 40°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q9.2
AB is a line
∴ ∠AOC + ∠BOE + ∠COE = 180° (Angles on one side of a line)
⇒ 70° + ∠COE = 180°
⇒ ∠COE = 180°-70°= 110°
and ∠AOC = ∠BOD (Vertically opposite angles)
⇒ ∠AOC = 40°
∴ ∠BOE = 70° – 40° = 30°
and reflex ∠COE = 360° – ∠COE
= 360°- 110° = 250°

Question 10.
Which of the following statements are true (T) and which are false (F)?
(i) Angles forming a linear pair are supplementary.
(ii) If two adjacent angles are equal, then each angle measures 90°.
(iii) Angles forming a linear pair can both be acute angles.
(iv) If angles forming a linear pair are equal, then each of these angles is of measure 90°.
Solution:
(i) True.
(ii) False. It can be possible if they are a linear pair.
(iii) False. In a linear pair, if one is acute, then the other will be obtuse.
(iv) True.

Question 11.
Fill in the blanks so as to make the following statements true:
(i) If one angle of a linear pair is acute, then its other angle will be …….. .
(ii) A ray stands on a line, then the sum of the two adjacent angles so formed is ……… .
(iii) If the sum of two adjacent angles is 180°, then the …… arms of the two angles are opposite rays.
Solution:
(i) If one angle of a linear pair is acute, then its other angle will be obtuse.
(ii) A ray stands on a line, then the sum of the two adjacent angles so formed is 180°.
(iii) If the sum of two adjacent angles is 180°, then the uncommon arms of the two angles are opposite rays.

Question 12.
Prove that the bisectors of a pair of vertically opposite angles are in the same straight line.
Solution:
Given : Lines AB and CD intersect each other at O.
OE and OF are the bisectors of ∠AOC and ∠BOD respectively
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q12.1
To prove : OE and OF are in the same line
Proof : ∵ ∠AOC = ∠BOD (Vertically opposite angles)
∵ OE and OF are the bisectors of ∠AOC and ∠BOD
∴ ∠1 = ∠2 and ∠3 = ∠4
⇒ ∠1 = ∠2 = \(\frac { 1 }{ 2 }\) ∠AOC and
∠3 = ∠4 = \(\frac { 1 }{ 2 }\) ∠BOD
∴ ∠1 = ∠2 = ∠3 = ∠4
∵ AOB is a line
∴ ∠BOD + ∠AOD = 180° (Linear pair)
⇒ ∠3 + ∠4 + ∠AOD = 180°
⇒ ∠3 + ∠1 + ∠AOD = 180° (∵ ∠1 = ∠4)
∴ EOF is a straight line

Question 13.
If two straight lines intersect each other, prove that the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle.
Solution:
Given : AB and CD intersect each other at O. OE is the bisector of ∠AOD and EO is produced to F.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 Q13.1
To prove : OF is the bisector of ∠BOC
Proof : ∵ AB and CD intersect each other at O
∴ ∠AOD = ∠BOC (Vertically opposite angles)
∵OE is the bisector of ∠AOD
∴ ∠1 = ∠2
∵ AB and EF intersect each other at O
∴∠1 = ∠4 (Vertically opposite angles) Similarly, CD and EF intersect each other at O
∴ ∠2 = ∠3
But ∠1 = ∠2
∴ ∠3 = ∠4
OF is the bisector of ∠BOC

Hope given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3

Other Exercises

Question 1.
Find the cube roots of the following numbers by successive subtraction of numbers : 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397,
(i) 64
(ii) 512
(iii) 1728
Solution:
(i) 64
64 – 1 = 63
63 – 7 = 56
56 – 19 = 37
37 – 37 = 0
∴ 64 = (4)3
∴ Cube root of 64 = 4

(ii) 512
512 -1 =511
511- 7 = 504
504 – 19 = 485
485 – 37 = 448
448 – 61 = 387
387 – 91 =296
296 – 127 = 169
169 – 169 = 0
∴ 512 = (8)3
∴ Cube root of 512 = 8

(iii) 1728
1728 – 1= 1727
1727 -7 = 1720
1720 -19 = 1701
1701 -37= 1664
1664 – 61 = 1603
1603 – 91 = 1512
1512 -127= 1385 .
1385 – 169= 1216
1216 – 217 = 999
999 – 271 =728
728 – 331 = 397
397 – 397=0
∴ 1728 = (12)3
∴ Cube root of 1728 = 12

Question 2.
Using the method of successive subtraction, examine whether or not the following numbers are perfect cubes :
(i) 130
(ii) 345
(iii) 792
(iv) 1331
Solution:
(i) 130
130 – 1 = 129
129 -7 = 122
122 -19 = 103
103 -37 = 66
66 – 61 = 5
We see that 5 is left
∴ 130 is not a perfect cube.

(ii) 345
345 – 1 = 344
344 – 7 = 337
337 – 19 = 318
318 – 37 = 281
81 – 61 =220
220 – 91 = 129
129 – 127 = 2
We see that 2 is left
∴ 345 is not a perfect cube.

(iii) 792
792 – 1 = 791
791 – 7 = 784
784 – 19 = 765
765 – 37 = 728
728 – 61 = 667
667 – 91 = 576
576 – 127 = 449
449 – 169 = 280
∴ We see 280 is left as 280 <217
∴ 792 is not a perfect cube.

(iv) 1331
1331 – 1 = 1330
1330 -7 = 1323
1323 – 19 = 1304
1304 – 37 = 1267
1267 – 61 = 1206
1206 – 91 = 1115
1115 – 127 = 988
988 – 169 = 819
819 – 217 = 602
602 – 271 = 331
331 – 331 =0
∴ 1331 is a perfect cube

Question 3.
Find the smallest number that must be subtracted from those of the numbers in question 2, which are not perfect cubes, to make them perfect cubes. What are the corresponding cube roots ?
Solution:
We have examined in Question 2, the numbers 130, 345 and 792 are not perfect cubes. Therefore
(i) 130
130 – 1 = 129
129 -7= 122
122 -19 = 103
103 – 37 = 66
66 – 61 = 5
Here 5 is left
∴ 5 < 91 5 is to be subtracted to get a perfect cube.
Cube root of 130 – 5 = 125 is 5

(ii) 345
345 – 1 = 344
344 -7 = 337
337 – 19 = 318
318 – 37 = 281
281 – 61 =220
220 – 91 = 129
129 – 127 = 2
Here 2 is left ∵ 2 < 169
∴ Cube root of 345 – 2 = 343 is 7
∴ 2 is to be subtracted to get a perfect cube.

(iii) 792
792 – 1 = 791
791 – 7 = 784
784 – 19 = 765
765 – 37 = 728
728 – 61 =667
667 – 91 = 576 5
76 – 127 = 449
449 – 169 = 280
280 – 217 = 63
∴ 63 <217
∴ 63 is to be subtracted
∴ Cube root of 792 – 63 = 729 is 9

Question 4.
Find the cube root of each of the following natural numbers :
(i) 343
(ii) 2744
(iii) 4913
(iv) 1728
(v) 35937
(vi) 17576
(vii) 134217728
(viii) 48228544
(ix) 74088000
(x) 157464
(xi) 1157625
(xii) 33698267
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 1
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 2
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 4
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 6
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 8
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 9
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 10

Question 5.
Find the smallest number which when multiplied with 3600 will make the product a perfect cube. Further, find the cube root of the product.
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 11
Grouping the factors in triplets of equal factors, we see that 2, 3 x 3 and 5 x 5 are left
∴ In order to complete the triplets, we have to multiply it by 2, 3 and 5.
∴ The smallest number to be multiplied = 2×2 x 3 x 5 = 60
Now product = 3600 x 60 = 216000 and cube root of 216000
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 12

Question 6.
Multiply 210125 by the smallest number so that the product is a perfect cube. Also, find out the cube root of the product.
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 13
Grouping the factors in triplets of equal factors, we see that 41 x 41 is left
∴ In order to complete the triplet, we have to multiply it by 41
∴ Smallest number to be multiplied = 41
∴ Product = 210125 x 41 = 8615125
∴ Cube root of 8615125
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 14

Question 7.
What is the smallest number by which 8192 must be divided so that quotient is a perfect cube ? Also, find the cube root of the quotient so obtained.
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 15
Grouping the factors in triplets of equal factors, we see that 2 is left
∴ Dividing by 2, we get the quotient a perfect cube
∴ Perfect cube = 8192 + 2 = 4096
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 16

Question 8.
Three numbers are in the ratio 1:2:3. The sum of their cubes is 98784. Find the numbers.
Solution:
Ratio in numbers =1:2:3
Let first number = x
Then second number = 2x
and third number = 3x
∴ Sum of cubes of there numbers = (x)3 + (2x)3+(3x)3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 17
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 18

Question 9.
The volume of a cube is 9261000 m3. Find the side of the cube.
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 19

Hope given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B

RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Solutions Class 9 Chapter 14 Statistics Ex 14B.

Other Exercises

Question 1.
Solution:
We shall take the game along x-axis and number of students along y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q1.1

Question 2.
Solution:
We shall take the time on x-axis and temperature (in °C) on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q2.1

Question 3.
Solution:
We shall take name of vehicle on x-axis and velocity (in km/hr) on y-axis
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q3.1

Question 4.
Solution:
We shall take sports on x-axis and number of students on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q4.1

Question 5.
Solution:
We shall take years on x-axis and number of students on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q5.1

Question 6.
Solution:
We shall take years on x-axis and number of students on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q6.1

Question 7.
Solution:
We shall take years on x-axis and number of students on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q7.1

Question 8.
Solution:
We shall take years on x-axis and number of students on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q8.1

Question 9.
Solution:
We shall take years on x-axis and number of students on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q9.1

Question 10.
Solution:
We shall take years on x-axis and number of students on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q10.1

Question 11.
Solution:
We shall take week on x-axis and Rate per 10g (in Rs.) on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q11.1

Question 12.
Solution:
We shall take mode of transport on x-axis and number of students on y-axis.
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q12.1

Question 13.
Solution:
We see from the graph that
(i) It shows the marks obtained by a student in various subjects.
(ii) The student is very well in mathematics.
(iii) The student is very’ poor, in Hindi.
(iv) Average marks
= \(\frac { 60+35+75+50+60 }{ 5 } \) (Here x = 5)
= \(\frac { 280 }{ 5 } \)
= 56 marks
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14B Q13.1

Hope given RS Aggarwal Solutions Class 9 Chapter 14 Statistics Ex 14B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A

RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Solutions Class 9 Chapter 14 Statistics Ex 14A.

Other Exercises

Question 1.
Solution:
Statistics is a science which deals with the collection, presentation, analysis and interpretations of numerical data.

Question 2.
Solution:
(i) Numerical facts alone constitute data
(ii) Qualitative characteristics like intelligence, poverty etc. which cannot be measured, numerically, don’t form data.
(iii) Data are an aggregate of facts. A single observation does not form data.
(iv) Data collected for a definite purpose may not be suited for another purpose.
(v) Data is different experiments are comparable.

Question 3.
Solution:
(i) Primary data : The data collected by the investigator himself with a definite plan in mind are called primary data.
(ii) Secondary data : The data collected by some one other than the investigator are called secondary data. The primary data is more reliable and relevant.

Question 4.
Solution:
(i) Variate : Any character which is capable of taking several different values is called a variate or variable.
(ii) Class interval : Each group into which the raw data is condensed, is called a class interval
(iii) Class size : The difference between the true upper limit and the true lower limit of a class is called class size.
(iv) Class Mark : \(\frac { upper\quad limit+lower\quad limit }{ 2 } \) is called a class mark
(v) Class limits : Each class is bounded by two figures which are called class limits which are lower class limit and upper class limit.
(vi) True class limits : In exclusive form, the upper and lower limits of a class are respectively are the true upper limit and true lower limit but in inclusive form, the true lower limit of a class is obtained by subtracting O.S from lower limit of the class and for true limit, adding 0.5 to the upper limit.
(vii) Frequency of a class : The number of times an observation occurs in a class is called its frequency.
(viii) Cumulative frequency of a class : The cumulative frequency corresponding to a class is the sum of all frequencies upto and including that class.

Question 5.
Solution:
The given data can be represent in form of frequency table as given below:
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q5.1

Question 6.
Solution:
The frequency distribution table of the given data is given below :
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q6.1

Question 7.
Solution:
The frequency distribution table of the
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q7.1

Question 8.
Solution:
The frequency table is given below :
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q8.1

Question 9.
Solution:
The frequency table of given data is given below :
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q9.1

Question 10.
Solution:
The frequency distribution table of the given data in given below :
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q10.1

Question 11.
Solution:
The frequency table of the given data:
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q11.1

Question 12.
Solution:
The cumulative frequency of the given table is given below:
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q12.1

Question 13.
Solution:
The given table can be represented in a group frequency table in given below :
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q13.1

Question 14.
Solution:
Frequency table of the given cumulative frequency is given below :
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q14.1

Question 15.
Solution:
A frequency table of the given cumulative frequency table is given below :
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14A Q15.1

 

Hope given RS Aggarwal Solutions Class 9 Chapter 14 Statistics Ex 14A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.