RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3

RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3

Other Exercises

In each of the following, using the remainder Theorem, find the remainder when f(x) is divided by g(x) and verify the result by actual division (1 – 8) :

Question 1.
f(x) = x3 + 4x2 – 3x + 10, g(x) = x + 4
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q1.1

Question 2.
f(x) – 4x4 – 3x3 – 2x2 + x – 7, g(x) = x1
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q2.1

Question 3.
f(x) = 2x4 – 6X3 + 2x2 – x + 2, ,g(x) = x + 2
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q3.1
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q3.2

Question 4.
f(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q4.1
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q4.2

Question 5.
f(x) = x3 – 6x2 + 2x – 4, g(x) = 1 – 2x
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q5.1
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q5.2

Question 6.
f(x) = x4 – 3x2 + 4, g(x) = x – 2
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q6.1

Question 7.
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q7.2
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q7.3

Question 8.
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q8.2
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q8.3
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q8.4

Question 9.
If the polynomials 2x3 + ax2 + 3x – 5 and x3 + x2 – 4x + a leave the same remainder when divided by x – 2, find the value of a.
Solution:
Let f(x) = 2x3 + ax2 + 3x – 5
g(x) = x3+x2-4x + a
q(x) = x –  2 ⇒ x-2 = 0  ⇒x = 2
∴ Remainder =f(2) = 2(2)3 + a(2)2 + 3 x 2-5
= 2 x 8 4-a x 4 + 3 x 2-5
= 16 + 4a + 6 – 5
= 4a +17
and g(2) = (2)3 + (2)2 -4×2 + a
= 8 + 4 – 8 + a = a + 4
∵  In both cases, remainder are same
∴  4a + 17 = a + 4
⇒  4a – a = 4 – 17 ⇒  3a = -13
⇒ a = \(\frac { -13 }{ 3 }\)
Hence a = \(\frac { -13 }{ 3 }\)

Question 10.
If the polynomials ax3 + 3x2 – 13 and 2x3 – 5x + a, when divided by (x – 2), leave the same remainders, find the value of a.
Solution:
Let p(x) = ax3 + 3x2 – 13
q(x) = 2x5x + a
and divisor g(x) = x – 2
x-2 = 0
⇒ x = 2
∴ Remainder = p(2) = a(2)3 + 3(2)2 – 13
= 8a + 12 – 13 = 8a – 1
and q( 2) = 2(2)3 – 5×2 + a=16-10 + a
= 6 + a
∵  In each case remainder is same
∴ 8a – 1 = 6 + a
8a – a = 6 + 1
⇒  7a = 7
⇒ a = \(\frac { 7 }{ 7 }\)= 1
∴ a = 1

Question 11.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q11.1
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q11.2
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q11.3
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q11.4
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q11.5

Question 12.
The polynomials ax3 + 3a-2 – 3 and 2x3 – 5x + a when divided by (x – 4) leave the remainders R1 and R2, respectively. Find the values of a in each case of the following cases, if
(i) R1 = R2
(ii) R1 + R2 = 0
(iii) 2R1 – R2 = 0.
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q12.1
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 Q12.2

Hope given RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A

RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A.

Question 1.
Solution:
Base of the triangle (b) = 24cm and height (h) = 14.5 cm
∴ Area = \(\frac { 1 }{ 2 } \) x b x h = \(\frac { 1 }{ 2 } \) x 24 x 14.5 cm²
= 174 cm² Ans.

Question 2.
Solution:
Let the length of altitude of the triangular field = x then its base = 3x.
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q2.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q2.2

Question 3.
Solution:
Sides of a triangle = 42cm, 34cm and 20cm
Let a = 42cm, b = 34cm and c = 20 cm
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q3.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q3.2

Question 4.
Solution:
Sides of the triangle = 18cm, 24cm and 30cm
Let a = 18 cm, b = 24 cm and c = 30cm
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q4.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q4.2

Question 5.
Solution:
Sides of triangular field ABC arc 91m, 98m and 105m
Let AC be the longest side
∴ BD⊥AC
Here a = 98m, b = 105m and c = 91m
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q5.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q5.2

Question 6.
Solution:
Perimeter of triangle = 150m
Ratio in the sides = 5:12:13
Let sides be 5x, 12x and 13x
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q6.1

Question 7.
Solution:
Perimeter of a triangular field = 540m
Ratio is its sides = 25 : 17 : 12
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q7.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q7.2

Question 8.
Solution:
Perimeter of the triangular field = 324 m
Length of the sides are 85m and 154m
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q8.1

Question 9.
Solution:
Length of sides are
13 cm, 13 cm and 20cm
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q9.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q9.2

Question 10.
Solution:
Base of the isosceles triangle ABC = 80cm
Area = 360 cm²
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q10.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q10.2

Question 11.
Solution:
Perimeter of the triangle
ABC = 42 cm.
Let length of each equal sides = x
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q11.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q11.2
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q11.3

Question 12.
Solution:
Area of equilateral triangle = 36√3 cm².
Let length of each side = a
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q12.1

Question 13.
Solution:
Area of equilateral triangle = 81√3 cm²
Let length of each side = a
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q13.1

Question 14.
Solution:
∆ ABC is a right angled triangle, right angle at B.
∴ BC 48cm and AC = 50cm
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q14.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q14.2

Question 15.
Solution:
Each side of equilateral triangle
(a) = 8cm.
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q15.1

Question 16.
Solution:
Let a be the each side of
the equilateral triangle.
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q16.1

Question 17.
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q17.1
Solution:
The given umbrella has 12 triangular pieces of the size 50cm x 20cm x 50cm. We see that each piece is of an isosceles triangle shape and we have to find firstly area of one such triangle.
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q17.2
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q17.3

Question 18.
Solution:
The given floral design is made of 16 tiles
The size of each tile is 16cm 12cm, 20cm
Now we have to find the area of firstly one tile
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q18.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q18.2
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q18.3

Question 19.
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q19.1
Solution:
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q19.2
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q19.3

Question 20.
Solution:
In the figure, ABCD is a quadrilateral
AB = 42 cm, BC = 21 cm, CD = 29 cm,
DA = 34 cm and ∠CBD = 90°
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q20.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q20.2

Question 21.
Solution:
from the figure
∆DAB
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q21.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q21.2

Question 22.
Solution:
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q22.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q22.2

Question 23.
Solution:
from the figure,
We know that
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q23.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q23.2

Question 24.
Solution:
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q24.1
RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A Q24.2

Hope given RS Aggarwal Class 9 Solutions Chapter 7 Areas Ex 7A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3

RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3

Other Exercises

Question 1.
Find the squares of the following numbers using column method. Verify the result by finding the square using the usual multiplication :
(i) 25
(ii) 37
(iii) 54
(iv) 71
(v) 96
Solution:
(i) (25)2
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 1
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 2

Question 2.
Find the squares of the following numbers using diagonal method :
(i) 98
(ii) 273
(iii) 348
(iv) 295
(v) 171
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 3
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 4
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 5

Question 3.
Find the squares of the following numbers :
(i) 127
(ii) 503
(iii) 451
(iv) 862
(v) 265
Solution:
(i) (127)2 = (120 + 7)2
{(a + b)2 = a2 + lab + b2}
= (120)2 + 2 x 120 x 7 + (7)2
= 14400+ 1680 + 49 = 16129

(ii) (503)2 = (500 + 3)2
{(a + b)2 = a2 + lab + b1}
= (500)2 + 2 x 500 x 3 + (3)2
= 250000 + 3000 + 9 = 353009

(iii) (451)2 = (400 + 51)2
{(a + b)2 = a2 + lab + b2}
= (400)2 + 2 x 400 x 51 + (5l)2
= 160000 + 40800 + 2601 = 203401

(iv) (451)2 = (800 + 62)2
{(a + b)2 = a2 + lab + b2}
= (800)2 + 2 x 800 x 62 + (62)2
= 640000 + 99200 + 3844 = 743044

(v) (265)2
{(a + b)2 = a2 + 2ab + b2}
(200 + 65)2 = (200)2 + 2 x 200 x 65 + (65)2
= 40000 + 26000 + 4225 = 70225

Question 4.
Find the squares of the following numbers
(i) 425
(ii) 575
(iii) 405
(iv) 205
(v) 95
(vi) 745
(vii) 512
(viii) 995
Solution:
(i) (425)2
Here n = 42
∴ n (n + 1) = 42 (42 + 1) = 42 x 43 = 1806
∴ (425)2 = 180625

(ii) (575)2
Here n = 57
∴ n (n + 1) = 57 (57 + 1) = 57 x 58 = 3306
∴ (575)2 = 330625

(iii) (405)2
Here n = 40
∴ n (n + 1) = 40 (40 + 1) -40 x 41 = 1640
∴ (405)2 = 164025

(iv) (205)2
Here n = 20
∴ n (n + 1) = 20 (20 + 1) = 20 x 21 = 420
∴ (205)2 = 42025

(v) (95)2
Here n = 9
∴ n (n + 1) = 9 (9 + 1) = 9 x 10 = 90
∴ (95)2 = 9025

(vi) (745)2
Here n = 74
∴ n (n + 1) = 74 (74 + 1) = 74 x 75 = 5550
∴ (745)2 = 555025

(vii) (512)2
Here a = 1, b = 2
∴ (5ab)2 = (250 + ab) x 1000 + (ab)2
∴ (512)2 = (250 + 12) x 1000 + (12)2
= 262 x 1000 + 144
= 262000 + 144 = 262144

(viii) (995)2
Here n = 99
∴ n (n + 1) = 99 (99 + 1) = 99 x 100 = 9900
∴ (995)2 = 990025

Question 5.
Find the squares of the following numbers using the identity (a + b)1 = a2 + lab + b1
(i) 405
(ii) 510
(iii) 1001
(iv) 209
(v) 605
Solution:
a + b)2 = a2 + lab + b2

(i) (405)2 = (400 + 5)2
= (400)2 + 2 x 400 x 5 + (5)2
= 160000 + 4000 + 25 = 164025

(ii) (510)2 = (500 + 10)2
= (500)2 + 2 x 500 x 10 x (10)2
= 250000 + 10000 + 100
= 260100

(iii) (1001)2 = (1000+1)2
= (1000)2 + 2 X 1000 x 1 + (1)
= 1000000 + 2000 + 1
=1002001

(iv) (209)2 = (200 + 9)2
= (200)2 + 2 x 200 x 9 x (9)2
= 40000 + 3600 +81
= 43681

(v) (605)2 = (600 + 5)2
= (600)2 + 2 x 600 x 5 +(5)2
= 360000 + 6000       25
=366025

Question 6.
Find the squares of the following numbers using the identity (a – b)2 = a2 – 2ab + b2 :
(i) 395
(ii) 995
(iii) 495
(iv) 498
(v) 99
(vi) 999
(vii) 599
Solution:
a – b)2 = a2 – lab + b2

(i) (395)2 = (400 – 5)2
= (400)2 – 2 x 400 x 5 + (5)2
= 160000-4000 + 25
= 160025-4000
= 156025

(ii) (995)2 = (1000 – 5)2
= (1000)2 – 2 x 1000 x 5 + (5)2
= 1000000- 10000 + 25
= 1000025- 10000
= 990025

(iii) (495)2 = (500 – 5)2
= (500)2 – 2 x 500 x 5 + (5)2
= 250000 – 5000 + 25
= 250025 – 5000
= 245025

(iv) (498)2 = (500 – 2)2
= (500)2 – 2 x 500 x 2 + (2)2
= 250000 – 2000 + 4
= 250004 – 2000
= 248004

(v) (99)2 = (100 – l)2
= (100)2 – 2 x 100 x 1 + (1)2
= 10000 – 200 + 1
= 10001 – 200
= 9801

(vi) (999)2 = (1000- l)2
= (1000)2 – 2 x 1000 x 1+ (1)2
= 1000000-2000+1
= 10000001-2000=998001

(vii) (599)2 = (600 – 1)2
= (600)-2 x 600 X 1+ (1)2
= 360000 -1200+1
= 360001 – 1200 = 358801

Question 7.
Find the squares of the following numbers by visual method :
(i) 52
(ii) 95
(iii) 505
(iv) 702
(v) 99
Solution:
(a + b)2 = a2 – ab + ab + b2
(i) (52)2 = (50 + 2)2
= 2500 + 100 + 100 + 4
= 2704
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 6
(ii) (95)2 = (90 + 5)2
= 8100 + 450 + 450 + 25
= 9025
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 7
(iii) (505)2 = (500 + 5)2
= 250000 + 2500 + 2500 + 25
= 255025
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 8
(iv) (702)2 = (700 + 2)2
= 490000 + 1400+ 1400 + 4
= 492804
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 9
(v) (99)2 = (90 + 9)2
= 8100 + 810 + 810 + 81
= 9801
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 10

Hope given RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2

RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2

Other Exercises

Question 1.
If f(x) = 2x3 – 13x2 + 17x + 12, find
(i) f (2)
(ii) f (-3)
(iii) f(0)
Solution:
f(x) = 2x3 – 13x2 + 17x + 12
(i) f(2) = 2(2)3 – 13(2)2 + 17(2) + 12
= 2 x 8-13 x 4+17 x 2+12
= 16-52 + 34 + 12
= 62 – 52
= 10
(ii) f(-3) = 2(-3)3 – 13(-3)2 + 17 x (-3) + 12
= 2 x (-27) – 13 x 9 + 17 x (-3) + 12
= -54 – 117 -51 + 12
= -222 + 12
= -210
(iii) f(0) = 2 x (0)3 – 13(0)2 + 17 x 0 + 12
= 0-0 + 0+ 12 = 12

Question 2.
Verify whether the indicated numbers are zeros of the polynomials corresponding to them in the following cases: [NCERT]
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q2.2
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q2.3
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q2.4
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q2.5
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q2.6

Question 3.
If x = 2 is a root of the polynomial f(x) = 2x2-3x + la, find the value of a.
Solution:
p(x) = 2x2 – 3x + 7a
∵ x = 2 is its zero, then
p(0) = 0
∴ p( 2) = 2(2)2 – 3×2 + la = 0
⇒2 x 4-3 x2 + 7a = 0
⇒ 8 – 6 + 7o = 0
⇒2 + 7a = 0
⇒ 7a = -2 ⇒ a =\(\frac { -2 }{ 7 }\)
∴ Hence a = \(\frac { -2 }{ 7 }\)

Question 4.
If x = –\(\frac { 1 }{ 2 }\) is a zero of the polynomial p(x) = 8x3 – ax2 – x + 2, find the value of a.
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q4.1
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q4.2

Question 5.
If x = 0 and x = -1 are the roots of the polynomial f(x) = 2x3 – 3x2 + ax + b, find the value of a and b.
Solution:
f(x) = 2x3 – 3x2 + ax + b
∵ x = 0 and x = -1 are its zeros
∴ f(0) = 0 and f(-1) = 0
Now, f(0) = 0
⇒  2(0)3 – 3(0)2 + a x 0 + b = 0
⇒ 0-0 + 0 + b= 0
∴ b = 0
and f(-1) = 0
⇒ 2(-1)3 – 3(-1)2 + a(-1) + b = 0
⇒  2 x (-1) – 3 x 1 + a x (-1) + b = 0
⇒ -2 -3-a + b = 0
⇒ -2-3-a + 0 = 0
⇒ -5- a = 0=>a =-5
Hence a = -5, b = 0

Question 6.
Find the integral roots of the polynomial f(x) = x3 + 6x2 + 11x + 6.
Solution:
f(x) = x3 + 6x2 + 11x + 6
Construct = 6 = ±1, ±2, +3, ±6
If x = 1, then
f(1) = (1)3 + 6(1)2 + 11 x 1 + 6
= 1+ 6+11+ 6 = 24
∵  f(x) ≠ 0, +0
∴ x = 1 is not its zero
Similarly, f(-1) = (-1)3 + 6(-1)2 + 11(-1) + 6
= -1 + 6 x 1-11+6
=-1+6-11+6
= 12-12 = 0
∴  x = -1 is its zero
f(-2) = (-2)3 + 6(-2)2 + 11 (-2) + 6
= -8 + 24 – 22 + 6
= -30 + 30 = 0
∴ x = -2 is its zero
f(-3) = (-3)3 + 6(-3)2 + 11 (-3) + 6
= -27 + 54 – 33 + 6 = 60 – 60 = 0
∴  x = -3 is its zero
x = -1, -2, -3 are zeros of f(x)
Hence roots of f(x) are -1, -2, -3

Question 7.
Find the rational roots of the polynomial f(x) = 2x3 + x2 – 7x – 6.
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q7.1
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q7.2
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 Q7.3

Hope given RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A

RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A.

Question 1.
Solution:
Co-ordinates of
A are ( – 6, 5)
B are (5, 4)
C are ( – 3, 2)
D are (2, – 2)
E are ( – 1, – 4)
Ans.
RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A Q1.1

Question 2.
Solution:
The given points have been plotted as shown in the adjoining graph.
Where X’OX and YOY’ are the axis:
RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A Q2.1

Question 3.
Solution:
(i) (7, 0) lies on x-axis as its ordinate is (0)
(ii) (0, – 5) lies on y-axis as its abscissa is (0)
(iii) (0, 1) lies on y-axis as its abscissa is (0)
(iv) ( – 4, 0) lies on jc-axis as its ordinate is (0)
Ans.

Question 4.
Solution:
(i) ( – 6, 5) lies in second quadrant because A is of the type (-, +)
(ii) ( – 3, – 2) lies in third quadrant because A is of the type (-, -)
(iii) (2, – 9) lies in fourth quadrant because it is of the type (+, -).

Question 5.
Solution:
In the given equation, .
y = x+1
Put x = 0, then y = 0 + 1 = 1
x = 1, then, y = 1 + 1=2
x = 2, then, y = 2 + 1 = 3
Now, plot the points as given in the table given below on the graph, and join them as shown.
RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A Q5.1

Question 6.
Solution:
In the given equation
y = 3x + 2
Put x = 0,
then y = 3 x 0 + 2 = 0 + 2 = 2
x = 1, then
y = 3 x 1 + 2 = 3 + 2 = 5
and x = – 2, then
y = 3 x ( – 2) + 2 = – 6 + 2 = – 4
RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A Q6.1

Question 7.
Solution:
In the given equation,
y = 5x – 3
Put x = 1,y = 5 x 1 – 3 = 5 – 3 = 2
x = 0 then,
y = 5 x 0 – 3 = 0 – 3 = – 3
and x = 2, then
y = 5 x 2 – 3 = 10 – 3 = 7
RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A Q7.1

Question 8.
Solution:
In the given equation,
RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A Q8.1
y = 3x,
Put x = 0,
then y = 3 x 0 = 0
Put x = 1, then
y = 3 x 1 = 3
Put x = – 1, then
y = 3 ( – 1) = – 3
Now, plot the points as given in the table below
RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A Q8.2
and join them as shown.

Question 9.
Solution:
In the given equation, y = – x,
Put x = 1,
then y = – 1
Put x = 2, then
y = – 2
Put x = – 2, then
y = – ( – 2) = 2
RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A Q9.1

Hope given RS Aggarwal Class 9 Solutions Chapter 6 Coordinate Geometry Ex 6A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.