Value Based Questions in Science for Class 9 Chapter 10 Gravitation

Value Based Questions in Science for Class 9 Chapter 10 Gravitation

These Solutions are part of Value Based Questions in Science for Class 9. Here we have given Value Based Questions in Science for Class 9 Chapter 10 Gravitation

Question 1.
A spring balance for measuring weight of the range 0-0.5 kg wt has total 10 divisions on its scale. What is the least count of the spring balance ?
Answer:
Least count of the spring balance = Value of 1 division on its scale.
Here, 10 divisions = 0.5 kg wt
Value Based Questions in Science for Class 9 Chapter 10 Gravitation image - 1
Therefore, least count of the spring balance = 0.05 kg wt.

More Resources

Question 2.
A spring balance of the range 0-1 kg wt has total 100 divisions on its scale. What is the least count of the spring balance ?
Answer:
100 divisions = 1 kg wt
Value Based Questions in Science for Class 9 Chapter 10 Gravitation image - 2
Therefore, least count of the spring balance = 0.01 kg wt.

Question 3.
A spring balance of the range 0-2 kg wt has total 100 divisions on its scale. The pointer of the spring balance is in front of 10th division, when an object is suspended with the hook of the spring balance. What is the weight of the object ?
Answer:
100 divisions = 2 kg wt
Value Based Questions in Science for Class 9 Chapter 10 Gravitation image - 3

Hope given Value Based Questions in Science for Class 9 Chapter 10 Gravitation are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1

RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1

Other Exercises

Question 1.
Find the lateral surface area and total surface area of a cuboid of length 80 cm, breadth 40 cm and height 20 cm.
Solution:
Length of cuboid (l) = 80 cm
Breadth (b) = 40 cm
Height (h) = 20 cm
(i) ∴ Lateral surface area = 2h(l + b)
= 2 x 20(80 + 40) cm²
= 40 x 120 = 4800 cm²
(ii) Total surface area = 2(lb + bh + hl)
= 2(80 x 40 + 40 x 20 + 20 x 80) cm²
= 2(3200 + 800 + 1600) cm²
= 5600 x 2 = 11200 cm²

Question 2.
Find the lateral surface area and total surface area of a cube of edge 10 cm.
Solution:
Edge of cube (a) = 10 cm
(i) ∴ Lateral surface area = 4a²
= 4 x (10)² = 4 x 100 cm²= 400 cm²
(ii) Total surface area = 6a² = 6 x(10)² cm²
= 6 x 100 = 600 cm²

Question 3.
Find the ratio of the total surface area and lateral surface area of a cube.
Solution:
Let a be the edge of the cube, then Total surface area = 6a2²
and lateral surface area = 4a²
Now ratio between total surface area and lateral surface area = 6a² : 4a² = 3 : 2

Question 4.
Mary wants to decorate her Christmas tree. She wants to place the tree on a wooden block covered with coloured paper with picture of Santa Claus on it. She must know the exact quantity of paper to buy for this purpose. If the box has length, breadth and height as 80 cm, 40 cm and 20 cm respectively. How many square sheets of paper of side 40 cm would she require?   [NCERT]
Solution:
Length of box (l) = 80 cm
Breadth (b) = 40 cm
and height (h) = 20 cm
∴ Total surface area = 2(lb + bh + hl)
= 2[80 x 40 + 40 x 20 + 20 x 80] cm²
= 2[3200 + 800 + 1600] cm² = 2 x 5600 = 11200 cm²
Size of paper sheet = 40 cm
∴ Area of one sheet = (40 cm)² = 1600 cm²
∴ No. of sheets required for the box = 11200 = 1600 = 7 sheets

Question 5.
The length, breadth and height of a room are 5 m, 4 m and 3 m respectively. Find the cost of white washing the walls of the room and the ceiling at the rate of ₹7.50 m².
Solution:
Length of a room (l) = 5m
Breadth (b) = 4 m
and height (h) = 3 m
∴ Area of 4 walls = 2(l + b) x h
= 2(5 + 4) x 3 = 6 x 9 = 54 m²
and area of ceiling = l x b = 5 x 4 = 20 m²
∴ Total area = 54 + 20 = 74 m2
Rate of white washing = 7.50 per m²
∴ Total cost = ₹74 x 7.50 = ₹555

Question 6.
Three equal cubes are placed adjacently in a row. Find the ratio of total surface area of the new cuboid to that of the sum of the surface areas of the three cubes.
Solution:
Let each side of a cube = a cm
Then surface area = 6a² cm²
and surface area of 3 such cubes = 3 x 6a² = 18a² cm²
By placing three cubes side by side we get a cuboid whose,
Length (l) = a x 3 = 3a
Breadth (b) = a
Height (h) = a
∴ Total surface area = 2(lb + bh + hf)
= 2[3a x a+a x a+a x 3a] cm²
= 2[3a² + a² + 3a²] = 14 a²
∴ Ratio between their surface areas = 14a² : 18a² = 7 : 9

Question 7.
A 4 cm cube is cut into 1 cm cubes. Calculate the total surface area of all the small cubes.
Solution:
Side of cube = 4 cm
But cutting into 1 cm cubes, we get = 4 x 4 x 4 = 64
Now surface area of one cube = 6 x (1)²
= 6 x 1=6 cm²
and surface area of 64 cubes = 6 x 64 cm² = 384 cm²

Question 8.
The length of a hall is 18 m and the width 12 m. The sum of the areas of the floor and the flat roof is equal to the sum of the areas of the four walls. Find the height of the hall.
Solution:
Let h be the height of the room
Length (l) = 18 m
and width (b) = 12 m
Now surface area of floor and roof = 2 x lb = 2 x 18 x 12 m²
= 432 m²
and surface area of 4-walls = 2h (l + b)
= 2h(18 + 12) = 2 x 30h m² = 60h m²
∵ The surface are of 4-walls and area of floor and roof are equal
∴ 60h = 432
⇒ h = \(\frac { 432 }{ 60 }\) = \(\frac { 72 }{ 10 }\) m
∴ Height = 7.2m

Question 9.
Hameed has built a cubical water tank with lid for his house, with each other edge 1.5m long. He gets the outer surface of the tank excluding the base, covered with square tiles of side 25 cm. Find how much he would spend for the tiles, if the cost of tiles is ₹360 per dozen. [NCERT]
Solution:
Edge of cubical tank = 1.5 m
∴ Area of 4 walls = 4 (side)² = 4(1.5)² m² = 4 x 225 = 9 m²
Area of floor = (1.5)² = 2.25 m²
∴ Total surface area = 9 + 2.25 = 11.25 m²
Edge of square tile = 25 m = 0.25 m²
∴ Area of 1 tile = (0.25)2 = .0625 m²
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q9.1

Question 10.
Each edge of a cube is increased by 50%. Find the percentage increase in the surface area of the cube.
Solution:
Let edge of a cube = a
Total surface area = 6a2
By increasing edge at 50%,
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q10.1

Question 11.
A closed iron tank 12 m long, 9 m wide and 4 m deep is to be made. Determine the cost of iron sheet used at the rate of ₹5 per metre sheet, sheet being 2 m wide.
Solution:
Length of iron tank (l) = 12 m
Breadth (b) = 9 m
Depth (h) = 4 cm
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q11.1

Question 12.
Ravish wanted to make a temporary shelter for his car by making a box-like structure with tarpaulin that covers all the four sides and the top of tire car (with the front face as a flap which can be rolled up). Assuming that the stitching margins are very small, and therefore negligible, how much tarpaulin would be required to make (he shelter of height 2.5 m with base dimensions 4 m x 3 m? [NCERT]
Solution:
Length of base (l) = 4m
Breadth (b) = 3 m
Height (h) = 2.5 m
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q12.1

Question 13.
An open box is made of wood 3 cm thick. Its external length, breadth and height are 1.48 m, 1.16 m and 8.3 dm. Find the cost of painting the inner surface of ₹50 per sq. metre.
Solution:
Length of open wood box (L) = 1.48 m = 148 cm
Breadth (B) = 1.16 m = 116 cm
and height (H) = 8.3 dm = 83 cm
Thickness of wood = 3 cm
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q13.1
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q13.2

Question 14.
The dimensions of a room are 12.5 m by 9 m by 7 m. There are 2 doors and 4 windows in the room; each door measures 2.5 m by 1.2 m and each window 1.5 m by 1 m. Find the cost of painting the walls at ₹3.50 per square metre.
Solution:
Length of room (l) = 12.5 m
Breadth (b) = 9 m
and height (h) = 7 m
∴ Total area of walls = 2h(l + b)
= 2 x 7[12.5 + 9] = 14 x 21.5 m² = 301 m²
Area of 2 doors of 2.5 m x 1.2 m
= 2 x 2.5 x 1.2 m² = 6 m²
and area of 4 window of 1.5 m x 1 m
= 4 x 1.5 x 1 = 6 m²
∴ Remaining area of walls = 301 – (6 + 6)
= 301 – 12 = 289 m²
Rate of painting the walls = ₹3.50 per m²
∴ Total cost = 289 x 3.50 = ₹1011.50

Question 15.
The paint in a certain container is sufficient to paint on area equal to 9.375 m2. How many bricks of dimension 22.5 cm x 10 cm x 7.5 cm can be painted out of this container? [NCERT]
Solution:
Area of place for painting = 9.375 m²
Dimension of one brick = 22.5 cm x 10 cm x 7.5 cm
∴ Surface area of one bricks = 2 (lb + bh + hl)
= 2[22.5 x 10 + 10 x 7.5 + 7.5 x 22.5] cm2
= 2[225 + 75 + 168.75]
= 2 x 468.75 cm² = 937.5 cm²
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q15.1

Question 16.
The dimensions of a rectangular box are in the ratio of 2 : 3 : 4 and the difference between the cost of covering it with sheet of paper at the rates of ₹8 and ₹9.50 per m2 is ₹1248. Find the dimensions of the box.
Solution:
Ratio in the dimensions of a cuboidal box = 2 : 3 : 4
Let length (l) = 4x
Breadth (b) = 3.v
and height (h) = 2x
∴ Total surface area = 2 [lb + bh + hl]
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q16.1

Question 17.
The cost of preparing the walls of a room 12 m long at the rate of ₹1.35 per square metre is ₹340.20 and the cost of matting the floor at 85 paise per square metre is ₹91.80. Find the height of the room.
Solution:
Cost of preparing walls of a room = ₹340.20
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q17.1
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q17.2

Question 18.
The length and breadth of a hall are in the ratio 4 : 3 and its height is 5.5 metres. The cost of decorating its walls (including doors and windows) at ₹6.60 per square metre is ₹5082. Find the length and breadth of the room
Solution:
Ratio in length and breadth = 4:3
and height (h) = 5.5 m
Cost of decorating the walls of a room including doors and windows = ₹5082
Rate = ₹6.60 per m²
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q18.1

Question 19.
A wooden bookshelf has external dimensions as follows: Height =110 cm, Depth = 25 cm, Breadth = 85 cm (see figure). The thickness of the plank is 5 cm everywhere. The external faces are to be polished and the inner faces are to be painted. If the rate of polishing is 20 paise per cm2 and the rate of painting is 10 paise per cm2. Find the total expenses required for polishing and painting the surface of the bookshelf.  [NCERT]
Solution:
Length (l) = 85 cm
Breadth (b) = 25 cm
and height (h) = 110 cm
Thickness of plank = 5 cm
Surface area to be polished
= [(100 x 85) + 2 (110 x 25) + 2 (85 x 25) + 2 (110 x 5) + 4 (75 x 5)]
= (9350 + 5500 + 4250 + 1100 + 1500) cm² = 21700 cm²
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q19.1
RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 Q19.2

 

Hope given RD Sharma Class 9 Solutions Chapter 18 Surface Areas and Volume of a Cuboid and Cube Ex 18.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

HOTS Questions for Class 9 Science Chapter 10 Gravitation

HOTS Questions for Class 9 Science Chapter 10 Gravitation

These Solutions are part of HOTS Questions for Class 9 Science. Here we have given HOTS Questions for Class 9 Science Chapter 10 Gravitation

Question 1.
Gravitational force between two masses m1 and m2 separated by a distance r in air is F. What is the gravitational force between these masses separated by the same distance r in vacuum ?
Answer:
Gravitational force between two masses does not depend on the medium in which they are placed. Therefore, gravitational force between the masses in vacuum will also be F.

More Resources

Question 2.
Can a body has mass, but no weight ? Give reason for your answer. (CBSE 2015)
Answer:
Mass of a body is the quantity of matter contained in the body. However, weight of body = mg. Weight of a body is zero, when value of g = 0. The value of ‘g at the centre of the earth is zero, therefore, weight of the body at the centre of the earth is zero. Thus, body can have mass but no weight at the centre of the earth.

Question 3.
The value of acceleration due to gravity on a planet ‘A’ is ‘g’ What will be the value of acceleration due to gravity on another planet B whose mass is same as that of the planet ‘A’ but its radius is double the radius of planet ‘A’ ?
Answer:
HOTS Questions for Class 9 Science Chapter 10 Gravitation image - 1

Hope given HOTS Questions for Class 9 Science Chapter 10 Gravitation are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS

RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS

Other Exercises

Mark the correct alternative in each of the following:
Question 1.
The sides of a triangle are 16 cm, 30 cm, 34 cm. Its area is
(a) 225 cm²
(b) 225\(\sqrt { 3 } \) cm²
(c) 225\(\sqrt { 2 } \) cm²
(d) 240 cm²
Solution:
Sides of triangle and 16 cm, 30 cm, 34 cm
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q1.1

Question 2.
The base of an isosceles right triangle is 30 cm. Its area is
(a) 225 cm²
(b) 225\(\sqrt { 3 } \) cm²
(c) 225\(\sqrt { 2 } \) cm²
(d) 450 cm²
Solution:
Base of isosceles triangle ∆ABC = 30cm
Let each of equal sides = x
Then AB = AC = x
Now in right ∆ABC,
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q2.1

Question 3.
The sides of a triangle are 7cm, 9cm and 14cm. Its area is
(a) 12\(\sqrt { 5 } \) cm²
(b) 12\(\sqrt { 3 } \) cm²
(c) 24 \(\sqrt { 5 } \) cm²
(d) 63 cm²
Solution:
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q3.1

Question 4.
The sides of a triangular field are 325 m, 300 m and 125 m. Its area is
(a) 18750 m²
(b) 37500 m²
(c) 97500 m²
(d) 48750 m²
Solution:
Sides of a triangular field are 325m, 300m, 125m
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q4.1

Question 5.
The sides of a triangle are 50 cm, 78 cm and 112 cm. The smallest altitude is
(a) 20 cm
(b) 30 cm
(c) 40 cm
(d) 50 cm
Solution:
The sides of a triangle are 50 cm, 78 cm, 112cm
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q5.1

Question 6.
The sides of a triangle are 11m, 60m and 61m. Altitude to the smallest side is
(a) 11m
(b) 66 m
(c) 50 m
(d) 60 m
Solution:
Sides of a triangle are 11m, 60m and 61m
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q6.1

Question 7.
The sides of a triangle are 11 cm, 15 cm and 16 cm. The altitude to the largest side is
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q7.1
Solution:
Sides of a triangle are 11 cm, 15 cm, 16 cm
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q7.2

Question 8.
The base and hypotenuse of a right triangle are respectively 5cm and 13cm long. Its area is
(a) 25 cm²
(b) 28 cm²
(c) 30 cm²
(d) 40 cm²
Solution:
In a right triangle base = 5 cm
base hypotenuse = 13 cm
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q8.1

Question 9.
The length of each side of an equilateral triangle of area 4 \(\sqrt { 3 } \) cm², is
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q9.1
Solution:
Area of an equilateral triangle = 4\(\sqrt { 3 } \) cm²
Let each side be = a
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q9.2

Question 10.
If the area of an isosceles right triangle is 8cm, what is the perimeter of the triangle.
(a) 8 + \(\sqrt { 2 } \) cm²
(b) 8 + 4\(\sqrt { 2 } \) cm²
(c) 4 + 8\(\sqrt { 2 } \) cm²
(b) 12\(\sqrt { 2 } \) cm²
Solution:
Let base = x
ABC an isosceles right triangle, which has 2 sides same
⇒ Height = x
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q10.1
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q10.2

Question 11.
The length of the sides of ∆ABC are consecutive integers. If ∆ABC has the same perimeter as an equilateral triangle with a side of length 9cm, what is the length of the shortest side of ∆ABC?
(a) 4
(b) 6
(c) 8
(d) 10
Solution:
Side of an equilateral triangle = 9 cm
Its perimeter = 3 x 9 = 27 cm
Now perimeter of ∆ABC = 27 cm
and let its sides be x, x + 1, x +2
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q11.1

Question 12.
In the figure, the ratio of AD to DC is 3 to 2. If the area of ∆ABC is 40cm2, what is the area of ∆BDC?
(a) 16 cm²
(b) 24 cm²
(c) 30 cm²
(d) 36 cm²
Solution:
Ratio in AD : DC = 3:2
and area ∆ABC = 40 cm²
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q12.1
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q12.2

Question 13.
If the length of a median of an equilateral triangle is x cm, then its area is
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q13.1
Solution:
∵ The median of an equilateral triangle is the perpendicular to the base also,
∴ Let side of the triangle = a
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q13.2

Question 14.
If every side of a triangle is doubled, then increase in the area of the triangle is
(a) 100\(\sqrt { 2 } \) %
(b) 200%
(c) 300%
(d) 400%
Solution:
Let the sides of the original triangle be a, b, c
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q14.1

Question 15.
A square and an equilateral triangle have equal perimeters. If the diagonal of the square is 1272 cm, then area of the triangle is
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q15.1
Solution:
A square and an equilateral triangle have equal perimeter
RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS Q15.2

Hope given RD Sharma Class 9 Solutions Chapter 17 Constructions MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS

RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS

Other Exercises

Question 1.
Find the area of a triangle whose base and altitude are 5 cm and 4 cm respectively.
Solution:
In ∆ABC,
Base BC = 5cm
Altitude AD = 4cm
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q1.1

Question 2.
Find the area of a triangle whose sides are 3 cm, 4 cm and 5 cm respectively.
Solution:
Sides of triangle are 3 cm, 4cm and 5cm
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q2.1

Question 3.
Find the area of an isosceles triangle having the base x cm and one side y cm.
Solution:
In isosceles ∆ABC,
AB = AC = y cm
BC = x cm
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q3.1
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q3.2

Question 4.
Find the area of an equilateral triangle having each side 4 cm.
Solution:
Each side of equilateral triangle (a) = 4cm
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q4.1

Question 5.
Find the area of an equilateral triangle having each side x cm.
Solution:
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q5.1

Question 6.
The perimeter of a triangular field is 144 m and the ratio of the sides is 3 : 4 : 5. Find the area of the field.
Solution:
Perimeter of the field = 144 m
Ratio in the sides = 3:4:5
Sum of ratios = 3 + 4 + 5 = 12
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q6.1

Question 7.
Find the area of an equilateral triangle having altitude h cm.
Solution:
Altitude of an equilateral triangle = h
Let side of equilateral triangle = x
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q7.1

Question 8.
Let ∆ be the area of a triangle. Find the area of a triangle whose each side is twice the side of the given triangle.
Solution:
Let a, b, c be the sides of the original triangle
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q8.1
Hence area of new triangle = 4 x area of original triangle.

Question 9.
If each side of a triangle is doubled, then find percentage increase in its area.
Solution:
Sides of original triangle be a, b, c
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q9.1

Question 10.
If each side of an equilateral triangle is tripled then what is the percentage increase in the area of the triangle?
Solution:
Let the sides of the original triangle be a, b, c and area ∆, then
RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS Q10.1

Hope given RD Sharma Class 9 Solutions Chapter 17 Constructions VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.