RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS

Question 1.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q1.2

Question 2.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q2.2

Question 3.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q3.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q3.2

Question 4.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q4.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q4.3

Question 5.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q6.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q6.3

Question 7.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q7.2

Question 8.
If a + b + c = 9 and  ab + bc + ca = 23, then a2 + b2 + c2 =
(a) 35
(b) 58
(c) 127
(d) none of these
Solution:
a + b + c = 9, ab + bc + ca = 23
Squaring,
(a + b+ c) = (9)2
a2 + b2 + c2 + 2 (ab + bc + ca) = 81
⇒ a2 + b2 + c2 + 2 x 23 = 81
⇒  a2 + b2+ c2 + 46 = 81
⇒  a2 + b2+ c2 = 81 – 46 = 35   (a)

Question 9.
(a – b)3 + (b – c)3 + (c – a)3 =
(a) (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
(d) (a -b)(b- c) (c – a)
(c) 3(a – b) (b – c) (c – a)
(d) none of these
Solution:
(a – b)3 + (b- c)3 + (c- a)3
∵ a – b + b – c + c – a = 0
∴ (ab)3 + (b – c)3 + (c – a)3
= 3
(a -b)(b- c) (c – a)        (c)

Question 10.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q10.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q10.2

Question 11.
If a – b = -8 and ab = -12 then a3 – b3 =
(a) -244
(b) -240
(c) -224
(d) -260
Solution:
a – b = -8, ab = -12
(a – b)3 = a3 – b3 – 3ab (a – b)
(-8)3 = a3 – b3 – 3 x (-12) (-8)
-512 = a3-b3– 288
a3 – b3 = -512 + 288 = -224      (c)

Question 12.
If the volume of a cuboid is 3x2 – 27, then its possible dimensions are
(a) 3, x2, -27x
(b) 3, x – 3, x + 3
(c) 3, x2, 27x
(d) 3, 3, 3
Solution:
Volume = 3x2 -27 = 3(x2 – 9)
= 3(x + 3) (x – 3)
∴ Dimensions are   = 3, x – 3, x   +  3        (b)

Question 13.
75 x 75 + 2 x 75 x 25    + 25 x 25 is equal to
(a) 10000
(b) 6250
(c) 7500
(d) 3750
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q13.1

Question 14.
(x – y) (x + y)(x2 + y2) (x4 + y4) is equal to
(a) x16 – y16
(b) x8 – y8
(c) x8 + y8
(d) x16 + y16
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q14.1

Question 15.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q15.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q15.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q15.3

Question 16.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q16.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q16.3

Question 17.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q17.2

Question 18.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q18.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q18.3

Question 19.
If a2 + b2 + c2 – ab – bc – ca = 0, then
(a) a + b = c
(b) b + c = a
(c) c + a = b
(d) a = b = c
Solution:
a2 + b2 + c2 – ab – bc – ca = 0
2 {a2 + b2 + c2 – ab – be – ca) = 0 (Multiplying by 2)
⇒  2a2 + 2b2 + 2c2– 2ab – 2bc – 2ca = 0
⇒  a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
(a – b)2 = 0, then a – b = 0
⇒ a = b
Similarly, (b – c)2 = 0, then
b-c = 0
⇒ b = c
and (c – a)2 = 0, then c-a = 0
⇒ c = a
∴ a = b – c           (d)

Question 20.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q20.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q20.2

Question 21.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q21.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q21.2

Question 22.
If a + b + c = 9 and ab + bc + ca = 23, then a3 + b3 + c3 – 3 abc =
(a) 108
(b) 207
(c) 669
(d) 729
Solution:
a3 + b3 + c3 – 3abc
= (a + b + c) [a2 + b2 + c2 – (ab + bc + ca)
Now, a + b + c = 9
Squaring,
a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  a2 + b2 + c2 + 2 x 23 = 81
⇒  a2 + b2 + c2 + 46 = 81
⇒  a2 + b2 + c2 = 81 – 46 = 35
Now, a3 + b3 + c3 – 3 abc = (a + b + c) [(a2 + b2 + c2) – (ab + bc + ca)
= 9[35 -23] = 9 x 12= 108                     (a)

Question 23.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q23.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q23.2

Question 24.
The product (a + b) (a – b) (a2 – ab + b2) (a2 + ab + b2) is equal to
(a) a6 +   b6
(b) a6 – b6
(c) a3 – b3
(d) a3 + b3
Solution:
(a + b) (a – b) (a2 – ab + b2) (a2 + ab +b2)
= (a + b) (a2-ab + b2) (a-b) (a2 + ab + b2)
= (a3 + b3) (a3 – b3)
= (a3)2 – (b3)2 = a6 – b6   (b)

Question 25.
The product (x2 – 1) (x4 + x2 + 1) is equal to
(a) x8 –   1
(b) x8 + 1
(c) x6 –   1
(d) x6 + 1
Solution:
(x2 – 1) (x4 + x2 + 1)
= (x2)3 – (1)3 = x6 – 1                            (c)

Question 26.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q26.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q26.2

Question 27.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q27.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q27.2

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS

Question 1.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q1.2

Question 2.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q2.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q2.3

Question 3.
If a + b = 7 and ab = 12, find the value of a2 + b2.
Solution:
a + b = 7, ab = 12
Squaring both sides,
(a + b)2 = (7)2
⇒  a2 + b2 + 2ab = 49
⇒  a2 + b2 + 2 x 12 = 49
⇒ a2 + b2 + 24 = 49
⇒ a2 + b2 = 49 – 24 = 25
∴ a2 + b2 = 25

Question 4.
If a – b = 5 and ab = 12, find the value of a2 + b2 .
Solution:
a – b = 5, ab = 12
Squaring both sides,
⇒ (a – b)2 = (5)2
⇒  a2 + b2 – 2ab = 25
⇒  a2 + b2 – 2 x 12 = 25
⇒  a2 + b2 – 24 = 25
⇒  a2 + b2 = 25 + 24 = 49
∴ a2 + b2 = 49

Question 5.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q6.2

Question 7.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q7.2

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5

Question 1.
Find the following products:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
(ii) (4x -3y + 2z) (16x2 + 9y2+ 4z2 + 12xy + 6yz – 8zx)
(iii) (2a – 3b – 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
(iv) (3x -4y + 5z) (9x2 + 16y2 + 25z2 + 12xy- 15zx + 20yz)
Solution:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
= (3x + 2y + 2z) [(3x)2 + (2y)2 + (2z)2 – 3x x 2y + 2y x 2z + 2z x 3x]
= (3x)3 + (2y)3  + (2z)3 – 3 x 3x x 2y x 2z
= 27x3 + 8y3 + 8Z3 – 36xyz
(ii) (4x – 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz – 8zx)
= (4x -3y + 2z) [(4x)2 + (-3y)2 + (2z)2 – 4x x (-3y + (3y) x (2z) – (2z x 4x)]
= (4x)3 + (-3y)3 + (2z)3 – 3 x 4x x (-3y) x (2z)
= 64x3 – 27y3 + 8z3 + 72xyz
(iii) (2a -3b- 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
= (2a -3b- 2c) [(2a)2 + (3b)2 + (2c)2 – 2a x (-3b) – (-3b) x (-2c) – (-2c) x 2a]
= (2a)3 + (3b)3 + (-2c)3 -3x 2a x (-3 b) (-2c)
= 8a3 – 21b3 -8c3 – 36abc
(iv) (3x – 4y + 5z) (9x2 + 16y2 + 25z2 + 12xy – 15zx + 20yz)
= [3x + (-4y) + 5z] [(3x)2 + (-4y)2 + (5z)2 – 3x x (-4y) -(-4y) (5z) – 5z x 3x]
= (3x)3 + (-4y)3 + (5z)3 – 3 x 3x x (-4y) (5z)
= 27x3 – 64y3 + 125z3 + 180xyz

Question 2.
Evaluate:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 Q2.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 Q2.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 Q2.4

Question 3.
If x + y + z = 8 and xy + yz+ zx = 20, find the value of x3 + y3 + z3 – 3xyz.
Solution:
We know that
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 -xy -yz – zx)
Now, x + y + z = 8
Squaring, we get
(x + y + z)2 = (8)2
x2 + y2 + z2 + 2(xy + yz + zx) = 64
⇒ x2 + y2 + z2 + 2 x 20 = 64
⇒  x2 + y2 + z2 + 40 = 64
⇒  x2 + y2 + z2 = 64 – 40 = 24
Now,
x3 + y3 + z3 – 3xyz = (x + y + z) [x2 + y2 + z2 – (xy + yz + zx)]
= 8(24 – 20) = 8 x 4 = 32

Question 4.
If a +b + c = 9 and ab + bc + ca = 26, find the value of a3 + b3 + c3 – 3abc.
Solution:
a + b + c = 9, ab + be + ca = 26
Squaring, we get
(a + b + c)2 = (9)2
a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  a2 + b2 + c2 + 2 x 26 = 81
⇒ a2 + b2 + c2 + 52 = 81
∴  a2 + b2 + c2 = 81 – 52 = 29
Now, a3 + b3 + c3 – 3abc = (a + b + c) [(a2 + b2 + c2 – (ab + bc + ca)]
= 9[29 – 26]
= 9 x 3 = 27

Question 5.
If a + b + c = 9, and a2 + b2 + c2 = 35, find the value of a3 + b3 + c3 – 3abc.
Solution:
a + b + c = 9
Squaring, we get
(a + b + c)2 = (9)2
⇒  a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  35 + 2(ab + bc + ca) = 81
2(ab + bc + ca) = 81 – 35 = 46
∴  ab + bc + ca = \(\frac { 46 }{ 2 }\) = 23
Now, a3 + b3 + c3 – 3abc
= (a + b + c) [a2 + b2 + c2 – (ab + bc + ca)]
= 9[35 – 23] = 9 x 12 = 108

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

Question 1.
Find the following products:
(i) (3x + 2y) (9X2 – 6xy + Ay2)
(ii) (4x – 5y) (16x2 + 20xy + 25y2)
(iii) (7p4 + q) (49p8 – 7p4q + q2)
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.5
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.6

Question 2.
If x = 3 and y = -1, find the values of each of the following using in identity:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.5

Question 3.
If a + b = 10 and ab = 16, find the value of a2 – ab + b2 and a2 + ab + b2.
Solution:
a + b = 10, ab = 16 Squaring,
(a + b)2 = (10)2
⇒ a2 + b2 + lab = 100
⇒ a2 + b2 + 2 x 16 = 100
⇒  a2 + b2 + 32 = 100
∴ a2 + b2 = 100 – 32 = 68
Now, a2 – ab + b2 = a2 + b2 – ab = 68 – 16 = 52
and a2 + ab + b2 = a2 + b2 + ab = 68 + 16 = 84

Question 4.
If a + b = 8 and ab = 6, find the value of a3 + b3.
Solution:
a + b = 8, ab = 6
Cubing both sides,
(a + b)3 = (8)3
⇒ a3 + b3 + 3 ab{a + b) = 512
⇒  a3 + b3 + 3 x 6 x 8 = 512
⇒  a3 + b3 + 144 = 512
⇒  a3 + b3 = 512 – 144 = 368
∴ a3 + b3 = 368

Question 5.
If a – b = 6 and ab = 20, find the value of a3-b3.
Solution:
a – b = 6, ab = 20
Cubing both sides,
(a – b)3 = (6)3
⇒  a3 – b3 – 3ab(a – b) = 216
⇒  a3 – b3 – 3 x 20 x 6 = 216
⇒  a3 – b3 – 360 = 216
⇒  a3 -b3 = 216 + 360 = 576
∴ a3 – b3 = 576

Question 6.
If x = -2 and y = 1, by using an identity find the value of the following:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.3

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

Question 1.
Find the cube of each of the following binomial expressions:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.5

Question 2.
If a + b = 10 and ab = 21, find the value of a3 + b3.
Solution:
a + b = 10, ab = 21
Cubing both sides,
(a + b)3 = (10)3
⇒ a3 + 63 + 3ab (a + b) = 1000
⇒  a3 + b3 + 3 x 21 x 10 = 1000
⇒  a3 + b3 + 630 = 1000
⇒  a3 + b3 = 1000 – 630 = 370
∴ a3 + b3 = 370

Question 3.
If a – b = 4 and ab = 21, find the value of a3-b3.
Solution:
a – b = 4, ab= 21
Cubing both sides,
⇒ (a – A)3 = (4)3
⇒ a3 – b3 – 3ab (a – b) = 64
⇒ a3-i3-3×21 x4 = 64
⇒  a3 – 63 – 252 = 64
⇒  a3 – 63 = 64 + 252 =316
∴ a3 – b3 = 316

Question 4.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q4.2

Question 5.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q6.2

Question 7.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.3

Question 8.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.3

Question 9.
If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 21y3.
Solution:
2x + 3y = 13, xy = 6
Cubing both sides,
(2x + 3y)3 = (13)3
⇒ (2x)3 + (3y)3 + 3 x 2x x 3X2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18xy(2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18 x 6 x 13 = 2197
⇒ 8X3 + 27y3 + 1404 = 2197
⇒  8x3 + 27y3 = 2197 – 1404 = 793
∴ 8x3 + 27y3 = 793

Question 10.
If 3x – 2y= 11 and xy = 12, find the value of 27x3 – 8y3.
Solution:
3x – 2y = 11 and xy = 12 Cubing both sides,
(3x – 2y)3 = (11)3
⇒  (3x)3 – (2y)3 – 3 x 3x x 2y(3x – 2y) =1331
⇒  27x3 – 8y3 – 18xy(3x -2y) =1331
⇒   27x3 – 8y3 – 18 x 12 x 11 = 1331
⇒  27x3 – 8y3 – 2376 = 1331
⇒  27X3 – 8y3 = 1331 + 2376 = 3707
∴ 2x3 – 8y3 = 3707

Question 11.
Evaluate each of the following:
(i)  (103)3
(ii) (98)3
(iii) (9.9)3
(iv) (10.4)3
(v) (598)3
(vi) (99)3
Solution:
We know that (a + bf = a3 + b3 + 3ab(a + b) and (a – b)3= a3 – b3 – 3 ab(a – b)
Therefore,
(i)  (103)3 = (100 + 3)3
= (100)3 + (3)3 + 3 x 100 x 3(100 + 3)    {∵ (a + b)3 = a3 + b3 + 3ab(a + b)}
= 1000000 + 27 + 900 x 103
= 1000000 + 27 + 92700
= 1092727
(ii) (98)3 = (100 – 2)3
= (100)3 – (2)3 – 3 x 100 x 2(100 – 2)
= 1000000 – 8 – 600 x 98
= 1000000 – 8 – 58800
= 1000000-58808
= 941192
(iii) (9.9)3 = (10 – 0.1)3
= (10)3 – (0.1)3 – 3 X 10 X 0.1(10 – 0.1)
= 1000 – 0.001 – 3 x 9.9
= 1000 – 0.001 – 29.7
= 1000 – 29.701
= 970.299
(iv) (10.4)3 = (10 + 0.4)3
= (10)3 + (0.4)3 + 3 x 10 x 0.4(10 + 0.4)
= 1000 + 0.064 + 12(10.4)
= 1000 + 0.064 + 124.8 = 1124.864
(v) (598)3 = (600 – 2)3
= (600)3 – (2)3 – 3 x 600 x 2 x (600 – 2)
= 216000000 – 8 – 3600 x 598
= 216000000 – 8 – 2152800
= 216000000 – 2152808
= 213847192
(vi) (99)3 = (100 – 1)3
= (100)3 – (1)3 – 3 x 100 x 1 x (100 – 1)
= 1000000 – 1 – 300 x 99
= 1000000 – 1 – 29700
= 1000000 – 29701
= 970299

Question 12.
Evaluate each of the following:
(i)  1113 – 893
(ii) 463 + 343
(iii) 1043 + 963
(iv) 933 – 1073
Solution:
We know that a3 + b3 = (a + bf – 3ab(a + b) and a3 – b3 = (a – bf + 3 ab(a – b)
(i) 1113 – 893
= (111 – 89)3 + 3 x ill x 89(111 – 89)
= (22)3 + 3 x 111 x 89 x 22
= 10648 + 652014 = 662662
(OR)
(a + b)3 – (a – b)3 = 2(b3 + 3a2b)
= 1113 – 893 = (100 + 11)3 – (100 – 11)3
= 2(113 + 3 x 1002 x 11]
= 2(1331 + 330000]
= 331331 x 2 = 662662
(a + b)3 + (a- b)3 = 2(b3 + 3ab2)
(ii) 463 + 343 = (40 + 6)3 + (40 – 6)3
= 2[(40)3 + 3 x 40 x 62]
= 2[64000 + 3 x 40 x 36]
= 2[64000 + 4320]
= 2 x 68320 = 136640
(iii) 1043 + 963 = (100 + 4)3 + (100 – 96)3
= 2 [a3 + 3 ab2]
= 2[(100)3 + 3 x 100 x (4)2]
= 2[ 1000000 + 300 x 16]
= 2[ 1000000 + 4800]
= 1004800 x 2 = 2009600
(iv) 933 – 1073 = -[(107)3 – (93)3]
= -[(100 + If – (100 – 7)3]
= -2[b3 + 3a2b)]
= -2[(7)3 + 3(100)2 x 7]
= -2(343 + 3 x 10000 x 7]
= -2[343 + 210000]
= -2[210343] = -420686

Question 13.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.4

Question 14.
Find the value of 27X3 + 8y3 if
(i) 3x + 2y = 14 and xy = 8
(ii) 3x + 2y = 20 and xy = \(\frac { 14 }{ 9 }\)
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q14.1
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q14.2

Question 15.
Find the value of 64x3 – 125z3, if 4x – 5z = 16 and xz = 12.
Solution:
4x – 5z = 16, xz = 12
Cubing both sides,
(4x – 5z)3 = (16)3
⇒ (4x)3 – (5y)3 – 3 x 4x x 5z(4x – 5z) = 4096
⇒ 64x3 – 125z3 – 3 x 4 x 5 x xz(4x – 5z) = 4096
⇒  64x3 – 125z3 – 60 x 12 x 16 = 4096
⇒ 64x3 – 125z3 – 11520 = 4096
⇒  64x3 – 125z3 = 4096 + 11520 = 15616

Question 16.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.3

Question 17.
Simplify each of the following:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.5

Question 18.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.4

Question 19.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.3

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.