RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS
These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS
Other Exercises
- RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1
- RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2
- RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.3
- RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4
- RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions VSAQS
- RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS
Mark the correct alternative in each of the following:
 Question 1.
 The factors of x3 – x2y -xy2 + y3 are
 (a) (x + y) (x2 -xy + y2)
 (b) (x+y)(x2 + xy + y2)
 (c) (x + y)2 (x – y)
 (d) (x – y)2 (x + y)
 Solution:
 x3 – x2y – xy2 + y3
 = x3 + y3 – x2y – xy2
 = (x + y) (x2 -xy + y2)- xy(x + y)
 = (x + y) (x2 – xy + y2 – xy)
 = (x + y) (x2 – 2xy + y2)
 = (x + y) (x – y)2         (d)
Question 2.
 The factors of x3 – 1 +y3 + 3xy are
 (a) (x – 1 + y)  (x2 + 1 + y2 + x + y – xy)
 (b) (x + y + 1)  (x2 + y2 + 1- xy – x – y)
 (c) (x – 1 + y)   (x2 – 1 – y2 + x + y + xy)
 (d) 3(x + y – 1) (x2 + y2 – 1)
 Solution:
 x3 – 1 + y3 + 3xy
 = (x)3 + (-1)3 + (y)3 – 3 x  x  x (-1) x y
 = (x – 1 + y) (x2 + 1 + y2 + x + y – xy)
 = (x- 1 + y) (x2+ 1 + y2 + x + y – xy)      (a)
Question 3.
 The factors of 8a3 + b3 – 6ab + 1 are
 (a) (2a + b – 1) (4a2 + b2 + 1 – 3ab – 2a)
 (b) (2a – b + 1) (4a2 + b2 – 4ab + 1 – 2a + b)
 (c) (2a + b+1) (4a2 + b2 + 1 – 2ab – b – 2a)
 (d) (2a – 1 + b)(4a2 + 1 – 4a – b – 2ab)
 Solution:
 8a3 + b3 – 6ab + 1
 = (2a)3 + (b)3 + (1)3 – 3 x 2a x b x 1
 = (2a + b + 1) [(2a)2 + b2+1-2a x b- b x 1 – 1 x 2a]
 = (2a + b + 1) (4a2 + b2+1-2ab-b- 2a)            (c)
Question 4.
 (x + y)3 – (x – v)3 can be factorized as
 (a) 2y (3x2 + y2)                 
 (b) 2x (3x2 + y2)
 (c) 2y (3y2 + x2)                 
 (d) 2x (x2 + 3y2)
 Solution:
 (x + y)3 – (x – y)3
 = (x + y -x + y) [(x + y)2 + (x +y) (x -y) + (x – y)2]
 = 2y(x2 + y2 + 2xy + x2-y2 + x2+y2 – 2xy)
 = 2y(3x2 + y2)          (a)
Question 5.
 The expression (a – b)3 + (b – c)3 + (c – a)3 can be factorized as
 (a) (a -b) (b- c) (c – a) 
 (b) 3(a – b) (b – c) (c – a)
 (c) -3(a – b) (b – c) (a – a)
 (d) (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
 Solution:
 (a – b)3 + (b – c)3 + (c – a)3
 Let a – b = x, b – a = y, c – a = z
 ∴ x3 + y3 + z3
 x+y + z = a- b + b- c + c – a = 0
 ∴ x3 +y3 + z3 = 3xyz
 (a – b)3 + (b – a)3 + (c – a)3
 = 3 (a – b) (b – c) (c – a)        (b)
Question 6.
 
 Solution:
 
Question 7.
 
 Solution:
 
Question 8.
 The factors of a2 – 1 – 2x – x2 are
 (a) (a – x + 1) (a – x – 1)                                 
 (b) (a + x – 1) (a – x + 1)
 (c) (a + x + 1) (a – x – 1)                                
 (d) none of these
 Solution:
 a2 – 1- 2x – x2
 ⇒ a2 – (1 + 2x + x2)
 = (a)2 – (1 + x)2
 = (a + 1 + x) (a – 1 – x)                         (c)
Question 9.
 The factors of x4 + x2 + 25 are
 (a) (x2 + 3x + 5) (x2 – 3x + 5)                       
 (b) (x2 + 3x + 5) (x2 + 3x – 5)
 (c) (x2 + x + 5) (x2 – x + 5)                            
 (d) none of these
 Solution:
 x4 + x2 + 25 = x4 + 25 +x2
 = (x2)2 + (5)2 + 2 x x2 x 5- 9x2
 = (x2 + 5)2 – (3x)2
 = (x2 + 5 + 3x) (x2 + 5 – 3x)
 = (x2 + 3x + 5) (x2 – 3x + 5)                 (a)
Question 10.
 The factors of x2 + 4y2 + 4y – 4xy – 2x – 8 are
 (a) (x – 2y – 4) (x – 2y + 2)                             
 (b)  (x – y  +   2) (x – 4y – 4)
 (c) (x + 2y – 4) (x + 2y + 2)                         
  (d)    none of these
 Solution:
 x2 + 4y2 + 4y – 4xy – 2x – 8
 ⇒  x2 + 4y + 4y – 4xy – 2x – 8
 = (x)2 + (2y)2– 2 x x x 2y + 4y-2x-8
 = (x – 2y)2 – (2x – 4y) – 8
 = (x – 2y)2 – 2 (x – 2y) – 8
 Let x – 2y = a, then
 a2– 2a – 8 = a2– 4a + 2a – 8
 = a(a – 4) + 2(a – 4)
 = (a-4) (a + 2)
 = (x2 -2y-4) (x2 -2y + 2)                       (a)
Question 11.
 The factors of x3 – 7x + 6 are
 (a) x(x – 6) (x – 1)                                            
 (b) (x2 – 6) (x – 1)
 (c) (x + 1) (x + 2) (x – 3)                                
 (d) (x – 1) (x + 3) (x – 2)
 Solution:
 x3 -7x + 6= x3-1-7x + 7
 = (x – 1) (x2 + x + 1) – 7(x – 1)
 = (x – 1) (x2 + x + 1 – 7)
 = (x – 1) (x2 + x – 6)
 = (x – 1) [x2 + 3x – 2x – 6]
 = (x – 1) [x(x + 3) – 2(x + 3)]
 = (x – 1) (x+ 3) (x – 2)                           (d)
Question 12.
 The expression x4 + 4 can be factorized as
 (a) (x2 + 2x + 2) (x2 – 2x + 2)                        
 (b) (x2 + 2x + 2) (x2 + 2x – 2)
 (c) (x2 – 2x – 2) (x2 – 2x + 2)                         
  (d) (x2 + 2) (x2 – 2)
 Solution:
 x4 + 4 = x4 + 4 + 4x2 – 4x2                (Adding and subtracting 4x2)
 = (x2)2 + (2)2 + 2 x x2 x 2 – (2x)2
 = (x2 + 2)2 – (2x)2
 = (x2 + 2 + 2x) (x2 + 2 – 2x)                {∵ a2 – b2 = (a + b) (a – b)}
 = (x2 + 2x + 2) (x2 – 2x + 2)                  (a)
Question 13.
 If 3x = a + b + c, then the value of (x – a)3 + (x –    bf + (x – cf – 3(x – a) (x – b) (x – c) is
 (a) a + b + c                                                 
 (b) (a – b) {b – c) (c – a)
 (c) 0                                                                   
 (d) none of these
 Solution:
 3x = a + b + c                                                                      .
 ⇒ 3x-a-b-c = 0
 Now, (x – a)3+ (x – b)3 + (x – c)3 – 3(x – a) (x -b)  (x – c)
 = {(x – a) + (x – b) + (x – c)} {(x – a)2 + (x – b)2 + (x – c)2  – (x – a) (x – b) (x – b) (x – c) – (x – c) (x – a)}
 = (x – a + x – b + x – c) {(x – a)2 + (x – b)2  + (x – c)2 – (x – a) (x – b) – (x – b) (x – c) – (x – c) (x – a)}
 = (3x – a – b -c) {(x – a)2 + (x -b)2+ (x – c)2 – (x – a) (x – b) – (x – b) (x – c) – (x – c) (x – a)}
 But 3x-a-b-c = 0, then
 = 0 x {(x – a)2 + (x – b)2 + (x – c)2 – (x – a) (x – b) – (x – b) (x – c) – (x – c) (x – a)}
 = 0                                                         (c)
Question 14.
 If (x + y)3 – (x – y)3 – 6y(x2 – y2) = ky2, then k =
 (a) 1                                    
 (b) 2                                 
 (c) 4                                      
 (d) 8
 Solution:
 (x + y)3 – (x – y)3 – 6y(x2 – y2) = ky2
 LHS = (x + y)3 – (x – y)3 – 3 x (x + y) (x – y) [x + y – x + y]
 = (x+y-x + y)3       {∵ a3 – b3 – 3ab (a – b) = a3 – b3}
 = (2y)3 = 8y3
 Comparing with ky3, k = 8                     (d)
Question 15.
 If x3 – 3x2 + 3x – 7 = (x + 1) (ax2 + bx + c), then a + b + c =
 (a) 4                                    
 (b) 12                              
 (c) -10                                  
 (d) 3
 Solution:
 x3 – 3x2 + 3x + 7 = (x + 1) (ax2 + bx + c)
 = ax3 + bx2 + cx + ax2 + bx + c
 x3 – 3x2 + 3x – 7 = ax3 + (b + a)2 + (c + b)x + c
 Comparing the coefficient,
 a = 1
 b + a = -3 ⇒ b+1=-3 ⇒ b = -3-1=-4
 c + b = 3 ⇒ c- 4 = 3 ⇒ c = 3 + 4 = 7
 a + b + c = 1- 4 + 7 = 8- 4 = 4             (a)
Hope given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS are helpful to complete your math homework.
If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.







































