RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

Question 1.
Find the following products:
(i) (3x + 2y) (9X2 – 6xy + Ay2)
(ii) (4x – 5y) (16x2 + 20xy + 25y2)
(iii) (7p4 + q) (49p8 – 7p4q + q2)
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.5
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.6

Question 2.
If x = 3 and y = -1, find the values of each of the following using in identity:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.5

Question 3.
If a + b = 10 and ab = 16, find the value of a2 – ab + b2 and a2 + ab + b2.
Solution:
a + b = 10, ab = 16 Squaring,
(a + b)2 = (10)2
⇒ a2 + b2 + lab = 100
⇒ a2 + b2 + 2 x 16 = 100
⇒  a2 + b2 + 32 = 100
∴ a2 + b2 = 100 – 32 = 68
Now, a2 – ab + b2 = a2 + b2 – ab = 68 – 16 = 52
and a2 + ab + b2 = a2 + b2 + ab = 68 + 16 = 84

Question 4.
If a + b = 8 and ab = 6, find the value of a3 + b3.
Solution:
a + b = 8, ab = 6
Cubing both sides,
(a + b)3 = (8)3
⇒ a3 + b3 + 3 ab{a + b) = 512
⇒  a3 + b3 + 3 x 6 x 8 = 512
⇒  a3 + b3 + 144 = 512
⇒  a3 + b3 = 512 – 144 = 368
∴ a3 + b3 = 368

Question 5.
If a – b = 6 and ab = 20, find the value of a3-b3.
Solution:
a – b = 6, ab = 20
Cubing both sides,
(a – b)3 = (6)3
⇒  a3 – b3 – 3ab(a – b) = 216
⇒  a3 – b3 – 3 x 20 x 6 = 216
⇒  a3 – b3 – 360 = 216
⇒  a3 -b3 = 216 + 360 = 576
∴ a3 – b3 = 576

Question 6.
If x = -2 and y = 1, by using an identity find the value of the following:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.3

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

Question 1.
Find the cube of each of the following binomial expressions:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.5

Question 2.
If a + b = 10 and ab = 21, find the value of a3 + b3.
Solution:
a + b = 10, ab = 21
Cubing both sides,
(a + b)3 = (10)3
⇒ a3 + 63 + 3ab (a + b) = 1000
⇒  a3 + b3 + 3 x 21 x 10 = 1000
⇒  a3 + b3 + 630 = 1000
⇒  a3 + b3 = 1000 – 630 = 370
∴ a3 + b3 = 370

Question 3.
If a – b = 4 and ab = 21, find the value of a3-b3.
Solution:
a – b = 4, ab= 21
Cubing both sides,
⇒ (a – A)3 = (4)3
⇒ a3 – b3 – 3ab (a – b) = 64
⇒ a3-i3-3×21 x4 = 64
⇒  a3 – 63 – 252 = 64
⇒  a3 – 63 = 64 + 252 =316
∴ a3 – b3 = 316

Question 4.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q4.2

Question 5.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q6.2

Question 7.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.3

Question 8.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.3

Question 9.
If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 21y3.
Solution:
2x + 3y = 13, xy = 6
Cubing both sides,
(2x + 3y)3 = (13)3
⇒ (2x)3 + (3y)3 + 3 x 2x x 3X2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18xy(2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18 x 6 x 13 = 2197
⇒ 8X3 + 27y3 + 1404 = 2197
⇒  8x3 + 27y3 = 2197 – 1404 = 793
∴ 8x3 + 27y3 = 793

Question 10.
If 3x – 2y= 11 and xy = 12, find the value of 27x3 – 8y3.
Solution:
3x – 2y = 11 and xy = 12 Cubing both sides,
(3x – 2y)3 = (11)3
⇒  (3x)3 – (2y)3 – 3 x 3x x 2y(3x – 2y) =1331
⇒  27x3 – 8y3 – 18xy(3x -2y) =1331
⇒   27x3 – 8y3 – 18 x 12 x 11 = 1331
⇒  27x3 – 8y3 – 2376 = 1331
⇒  27X3 – 8y3 = 1331 + 2376 = 3707
∴ 2x3 – 8y3 = 3707

Question 11.
Evaluate each of the following:
(i)  (103)3
(ii) (98)3
(iii) (9.9)3
(iv) (10.4)3
(v) (598)3
(vi) (99)3
Solution:
We know that (a + bf = a3 + b3 + 3ab(a + b) and (a – b)3= a3 – b3 – 3 ab(a – b)
Therefore,
(i)  (103)3 = (100 + 3)3
= (100)3 + (3)3 + 3 x 100 x 3(100 + 3)    {∵ (a + b)3 = a3 + b3 + 3ab(a + b)}
= 1000000 + 27 + 900 x 103
= 1000000 + 27 + 92700
= 1092727
(ii) (98)3 = (100 – 2)3
= (100)3 – (2)3 – 3 x 100 x 2(100 – 2)
= 1000000 – 8 – 600 x 98
= 1000000 – 8 – 58800
= 1000000-58808
= 941192
(iii) (9.9)3 = (10 – 0.1)3
= (10)3 – (0.1)3 – 3 X 10 X 0.1(10 – 0.1)
= 1000 – 0.001 – 3 x 9.9
= 1000 – 0.001 – 29.7
= 1000 – 29.701
= 970.299
(iv) (10.4)3 = (10 + 0.4)3
= (10)3 + (0.4)3 + 3 x 10 x 0.4(10 + 0.4)
= 1000 + 0.064 + 12(10.4)
= 1000 + 0.064 + 124.8 = 1124.864
(v) (598)3 = (600 – 2)3
= (600)3 – (2)3 – 3 x 600 x 2 x (600 – 2)
= 216000000 – 8 – 3600 x 598
= 216000000 – 8 – 2152800
= 216000000 – 2152808
= 213847192
(vi) (99)3 = (100 – 1)3
= (100)3 – (1)3 – 3 x 100 x 1 x (100 – 1)
= 1000000 – 1 – 300 x 99
= 1000000 – 1 – 29700
= 1000000 – 29701
= 970299

Question 12.
Evaluate each of the following:
(i)  1113 – 893
(ii) 463 + 343
(iii) 1043 + 963
(iv) 933 – 1073
Solution:
We know that a3 + b3 = (a + bf – 3ab(a + b) and a3 – b3 = (a – bf + 3 ab(a – b)
(i) 1113 – 893
= (111 – 89)3 + 3 x ill x 89(111 – 89)
= (22)3 + 3 x 111 x 89 x 22
= 10648 + 652014 = 662662
(OR)
(a + b)3 – (a – b)3 = 2(b3 + 3a2b)
= 1113 – 893 = (100 + 11)3 – (100 – 11)3
= 2(113 + 3 x 1002 x 11]
= 2(1331 + 330000]
= 331331 x 2 = 662662
(a + b)3 + (a- b)3 = 2(b3 + 3ab2)
(ii) 463 + 343 = (40 + 6)3 + (40 – 6)3
= 2[(40)3 + 3 x 40 x 62]
= 2[64000 + 3 x 40 x 36]
= 2[64000 + 4320]
= 2 x 68320 = 136640
(iii) 1043 + 963 = (100 + 4)3 + (100 – 96)3
= 2 [a3 + 3 ab2]
= 2[(100)3 + 3 x 100 x (4)2]
= 2[ 1000000 + 300 x 16]
= 2[ 1000000 + 4800]
= 1004800 x 2 = 2009600
(iv) 933 – 1073 = -[(107)3 – (93)3]
= -[(100 + If – (100 – 7)3]
= -2[b3 + 3a2b)]
= -2[(7)3 + 3(100)2 x 7]
= -2(343 + 3 x 10000 x 7]
= -2[343 + 210000]
= -2[210343] = -420686

Question 13.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.4

Question 14.
Find the value of 27X3 + 8y3 if
(i) 3x + 2y = 14 and xy = 8
(ii) 3x + 2y = 20 and xy = \(\frac { 14 }{ 9 }\)
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q14.1
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q14.2

Question 15.
Find the value of 64x3 – 125z3, if 4x – 5z = 16 and xz = 12.
Solution:
4x – 5z = 16, xz = 12
Cubing both sides,
(4x – 5z)3 = (16)3
⇒ (4x)3 – (5y)3 – 3 x 4x x 5z(4x – 5z) = 4096
⇒ 64x3 – 125z3 – 3 x 4 x 5 x xz(4x – 5z) = 4096
⇒  64x3 – 125z3 – 60 x 12 x 16 = 4096
⇒ 64x3 – 125z3 – 11520 = 4096
⇒  64x3 – 125z3 = 4096 + 11520 = 15616

Question 16.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.3

Question 17.
Simplify each of the following:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.5

Question 18.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.4

Question 19.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.3

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J

RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Solutions Class 9 Chapter 2 Polynomials Ex 2J.

Other Exercises

Factorize :

Question 1.
Solution:
x3 + 27
= (x)3 + (3)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 1

Question 2.
Solution:
8x3 + 27y3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 2

Question 3.
Solution:
343 + 125b3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 3

Question 4.
Solution:
(1)3+(4x)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 4

Question 5.
Solution:
125a3+ \(\frac { 1 }{ 8 } \)
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 5

Question 6.
Solution:
216x3+\(\frac { 1 }{ 125 } \)
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 6

Question 7.
Solution:
16x4 + 54x
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 7

Question 8.
Solution:
7a3 + 56b3
=7(a3+8b3)
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 8

Question 9.
Solution:
x5 + x2
=x2(x3+1)
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 9

Question 10.
Solution:
a3 + 0.008
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 10

Question 11.
Solution:
x6 + y6
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 11

Question 12.
Solution:
2a3 + 16b3 – 5a – 10b
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 12

Question 13.
Solution:
x3 – 512
=(x)– (8)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 13

Question 14.
Solution:
64x3 – 343
=(4x)– (7)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 14

Question 15.
Solution:
1 – 27x3
=(1)3– (3x)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 15

Question 16.
Solution:
x3 – 125y3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 16

Question 17.
Solution:
8x3 – \(\frac { 1 }{ { 27y }^{ 3 } } \)
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 17

Question 18.
Solution:
a3 – 0.064
=(a)– (0.4)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 18

Question 19.
Solution:
(a + 6)3 – 8
=(a+b)– (2)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 19

Question 20.
Solution:
x6 – 729
=(x2)– (9)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 20

Question 21.
Solution:
(a + b)3 – (a – b)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 21

Question 22.
Solution:
x – 8xy3
=x(1 – 8y3)
=x{(1)– (2y)3}
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 22

Question 23.
Solution:
32x4 – 500x
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 23

Question 24.
Solution:
3a7b – 81a4 b4
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 24

Question 25.
Solution:
\({ a }^{ 3 }-\frac { 1 }{ { a }^{ 3 } } -2a+\frac { 2 }{ a } \)
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 25

Question 26.
Solution:
8a3 – b3 – 4ax + 2bx
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 26

Question 27.
Solution:
a3 + 3a2b + 3ab2 + b3 – 8
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2J 27

Hope given RS Aggarwal Solutions Class 9 Chapter 2 Polynomials Ex 2J are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2I

RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2I

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Solutions Class 9 Chapter 2 Polynomials Ex 2I.

Other Exercises

Question 1.
Solution:
(i)(3x+2)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2I Q1.1

Question 2.
Solution:
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2I Q2.1
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2I Q2.2
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2I Q2.3

Question 3.
Solution:
(i)(95)3 = (100 – 5)3
RS Aggarwal Class 9 Solutions Chapter 2 Polynomials Ex 2I Q3.1

Hope given RS Aggarwal Solutions Class 9 Chapter 2 Polynomials Ex 2I are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2

Question 1.
Write the following in the expanded form:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.5

Question 2.
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + be + ca.
Solution:
a + b+ c = 0
Squaring both sides,
(a + b + c)2 = 0
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 0
16 + 2(ab + bc + c) = 0
⇒ 2(ab + bc + ca) = -16
⇒  ab + bc + ca =-\(\frac { 16 }{ 2 }\) = -8
∴ ab + bc + ca = -8

Question 3.
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Solution:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
= 16 + 2 x 10
= 16 + 20 = 36
= (±6)2
∴ a + b + c = ±6

Question 4.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Solution:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ (9)2 = a2 + b2 + c2 + 2 x 23
⇒ 81= a2 + b2 + c2 + 46
⇒  a2 + b2 + c2 = 81 – 46 = 35
∴ 
a2 + b2 + c2 = 35

Question 5.
Find the value of 4x2 + y2 + 25z2 + 4xy – 10yz – 20zx when x = 4, y = 3 and z = 2.
Solution:
x = 4, y – 3, z = 2
4x2 + y2 + 25z2 + 4xy – 10yz – 20zx
= (2x)2 + (y)2 + (5z)2 + 2 x2 x x y-2 x y x 5z – 2 x 5z x 2x
= (2x + y- 5z)2
= (2 x 4 + 3- 5 x 2)2
= (8 + 3- 10)2
= (11 – 10)2
= (1)2 = 1

Question 6.
Simplify:
(i)  (a + b + c)2 + (a – b + c)2
(ii) (a + b + c)2 –  (a – b + c)2
(iii) (a + b + c)2 +   (a – b + c)2 + (a + b – c)2
(iv) (2x + p – c)2 – (2x – p + c)2
(v) (x2 + y2 – z2)2 – (x2 – y2 + z2)2
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q6.1
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q6.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q6.3

Question 7.
Simplify each of the following expressions:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.5

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.