RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C

RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Solutions Class 9 Chapter 11 Circle Ex 11C.

Other Exercises

Question 1.
Solution:
In cyclic quad. ABCD, ∠ DBC = 60° and ∠BAC = 40°
∴∠ CAD and ∠ CBD are in the same segment of the circle.
∴∠ CAD = ∠ CBD or ∠ DBC
=> ∠ CAD = 60°
∴∠BAD = ∠BAC + ∠CAD
= 40° + 60° = 100°
But in cyclic quad. ABCD,
∠BAD + ∠BCD = 180°
(Sum of opposite angles)
=> 100° + ∠BCD = 180°
=> ∠BCD = 180° – 100°
∴ ∠ BCD = 80°
Hence (i) ∠BCD = 80° and
(ii) ∠CAD = 60° Ans.

Question 2.
Solution:
In the figure, POQ is diameter, PQRS is a cyclic quad, and ∠ PSR =150° In cyclic quad. PQRS.
∠ PSR + ∠PQR = 180°
(Sum of opposite angles)
=> 150° + ∠PQR = 180°
=> ∠PQR = 180°- 150° = 30°
=> ∠PQR =180° – 150° = 30°
Now in ∆ PQR,
∴∠ PRQ = 90° (Angle in a semicircle)
∴∠ RPQ + ∠PQR = 90°
=> ∠RPQ + 30° = 90°
=> ∠RPQ = 90° – 30° = 60° Ans.

Question 3.
Solution:
In cyclic quad. ABCD,
AB || DC and ∠BAD = 100°
∠ ADC = ∠BAD =180°
(co-interior angles)
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q3.1
=> ∠ ADC + 100° = 180°
=> ∠ADC = 180° – 100° = 80°
∴ ABCD is a cyclic quadrilateral.
∴ ∠BAD + ∠BCD = 180°
=> 100° + ∠ BCD = 180°
=> ∠BCD = 180° – 100°
=> ∠BCD = 80°
Similarly ∠ABC + ∠ADC = 180°
=> ∠ABC + 80° = 180°
=> ∠ABC = 180° – 80° = 100°
Hence (i) ∠BCD = 80° (ii) ∠ADC = 80° and (iii) ∠ABC = 100° Ans.

Question 4.
Solution:
O is the centre of the circle and arc ABC subtends an angle of 130° at the centre i.e. ∠AOC = 130°. AB is produced to P
Reflex ∠AOC = 360° – 130° = 230°
Now, arc AC subtends reflex ∠ AOC at the centre and ∠ ABC at the remaining out of the circle.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q4.1

Question 5.
Solution:
In the figure, ABCD is a cyclic quadrilateral in which BA is produced to F and AE is drawn parallel to CD.
∠ABC = 92° and ∠FAE = 20°
ABCD is a cyclic quadrilateral.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q5.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q5.2

Question 6.
Solution:
In the figure, BD = DC and ∠CBD = 30°
In ∆ BCD,
BD = DC (given)
∠ BCD = ∠ CBD
(Angles opposite to equal sides)
= 30°
But ∠BCD + ∠CBD + ∠BDC = 180° (Angles of a triangle)
=> 30°+ 30°+ ∠BDC = 180°
=> 60°+ ∠BDC = 180°
=> ∠ BDC =180° – 60° = 120°
But ABDC is a cyclic quadrilateral
∠BAC + ∠BDC = 180°
=> ∠BAC + 120°= 180°
=> ∠ BAC = 180° – 120° = 60°
Hence ∠ BAC = 60° Ans.

Question 7.
Solution:
(i) Arc ABC subtends ∠ AOC at the centre , and ∠ ADC at the remaining part of the circle.
∠ AOC = 2 ∠ ADC
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q7.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q7.2

Question 8.
Solution:
In the figure, ABC is an equilateral triangle inscribed is a circle
Each angle is of 60°.
∠ BAC = ∠ BDC
(Angles in the same segment)
∠BDC = 60°
BECD is a cyclic quadrilateral.
∠BDC + ∠BEC = 180°
(opposite angles of cyclic quad.)
=> 60°+ ∠BEC = 180°
=> ∠BEC = 180° – 60°= 120°
Hence ∠BDC = 60° and ∠BEC = 120° Ans.

Question 9.
Solution:
ABCD is a cyclic quadrilateral.
∠BCD + ∠BAD = 180°
(opposite angles of a cyclic quad.)
=> 100°+ ∠BAD = 180°
so ∠BAD = 180° – 100° = 80°
Now in ∆ ABD,
∠BAD + ∠ABD + ∠ADB = 180° (Angles of a triangle)
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q9.1
=> 80° + 50° + ∠ADB = 180°
=> 130°+ ∠ADB = 180°
=> ∠ADB = 180° – 130° = 50°
Hence, ∠ADB = 50° Ans.

Question 10.
Solution:
Arc BAD subtends ∠ BOD at the centre and ∠BCD at the remaining part of the circle.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q10.1

Question 11.
Solution:
In ∆ OAB,
OA = OB (radii of the same circle)
∠OAB = ∠OBA = 50°
and Ext ∠BOD = ∠OAB + ∠OBA
=>x° = 50° + 50° – 100°
ABCD is a cyclic quadrilateral
∠BAD + ∠BCD = 180°
(opposite angles of a cyclic quad.)
=> 50°+ y° = 180°
=> y° = 180° – 50° = 130°
Hence x = 100° and y = 130° Ans.

Question 12.
Solution:
Sides AD and AB of cyclic quadrilateral ABCD are produced to E and F respectively.
∠CBF = 130°, ∠CDE = x.
∠CBF + ∠CBA = 180° (Linear pair)
=> 130°+ ∠CBA = 180°
=> ∠CBA = 180° – 130° = 50°
But Ext. ∠ CDE = Interior opp. ∠ CBA (In cyclic quad. ABCD)
=> x = 50° Ans.

Question 13.
Solution:
In a circle with centre O AB is its diameter and DO || CB is drawn. ∠BCD = 120°
To Find : (i) ∠BAD (ii) ABD
(iii) ∠CBD (iv) ∠ADC
(v) Show that ∆ AOD is an equilateral triangle.
(i) ABCD is a cyclic quadrilateral.
∠BCD + ∠BAD = 180°
120° + ∠BAD = 180°
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q13.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q13.2

Question 14.
Solution:
AB = 6cm, BP = 2cm, DP = 2.5cm
Let CD = xcm
Two chords AB and CD
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q14.1

Question 15.
Solution:
O is the centre of the circle
∠ AOD = 140° and ∠CAB = 50°
BD is joined.
(i) ABDC is a cyclic quadrilateral.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q15.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q15.2

Question 16.
Solution:
Given : ABCD is a cyclic quadrilateral whose sides AB and DC are produced to meet each other at E.
To Prove : ∆ EBC ~ ∆ EDA
Proof : In ∆ EBC and ∆ EDA
∠ E = ∠ E (common)
∠ECB = ∠EAD
{Exterior angle of a cyclic quad, is equal to its interior opposite angle}
and ∠ EBC = ∠EDA
∆ EBC ~ ∆ EDA (AAS axiom)
Hence proved

Question 17.
Solution:
Solution Given : In an isosceles ∆ ABC, AB = AC
A circle is drawn x in such a way that it passes through B and C and intersects AB and AC at D and E respectively.
DE is joined.
To Prove : DE || BC
Proof : In ∆ ABC,
AB = AC (given)
∠ B = ∠ C (angles opposite to equal sides)
But ∠ ADE = ∠ C (Ext. angle of a cyclic quad, is equal E to its interior opposite angle)
∠ADE = ∠B
But, these are corresponding angles
DE || BC.
Hence proved.

Question 18.
Solution:
Given : ∆ ABC is an isosceles triangle in which AB = AC.
D and E are midpoints of AB and AC respectively.
DE is joined.
To Prove : D, B, C, E are concyclic.
Proof: D and E are midpoints of sides AB and AC respectively.
DE || BC
In ∆ ABC, AB = AC
∠B = ∠C
But ∠ ADE = ∠ B (alternate angles)
∠ADE =∠C
But ∠ADE is exterior angle of quad. DBCE which is equal to its interior opposite angle C.
DBCE is a cyclic quadrilateral.
Hence D, B, C, E are con cyclic.
Hence proved.

Question 19.
Solution:
Given : ABCD is a cyclic quadrilateral whose perpendicular bisectors l, m, n, p of the side are drawn
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q19.1
To prove : l, m, n and p are concurrent.
Proof : The sides AB, BC, CD and DA are the chords of the circle passing through the vertices’s of quad. A, B, C and D. and perpendicular bisectors of a chord always passes through the centre of the circle.
l,m, n and p which are the perpendicular bisectors of the sides of cyclic quadrilateral will pass through O, the same point Hence, l, m, n and p are concurrent.
Hence proved.

Question 20.
Solution:
Given : ABCD is a rhombus and four circles are drawn on the sides AB, BC, CD and DA as diameters. Diagonal AC and BD intersect each other at O.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q20.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q20.2

Question 21.
Solution:
Given: ABCD is a rectangle whose diagonals AC and BD intersect each other at O.
To prove : O is the centre of the circle passing through A, B, C and D
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q21.1

Question 22.
Solution:
Construction.
(i) Let A, B and C are three points
(ii) With A as centre and BC as radius draw an arc
(iii) With centre C, and radius AB, draw another arc which intersects the first arc at D.
D is the required point.
Join BD and CD, AC and BA and CB
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q22.1
BC = BC (common)
AC = BD (const.)
AB = DC
∴ ∆ ABC ≅ ∆ DBC (SSS axiom)
∴ ∠BAC ≅ ∠BDC (c.p.c.t.)
But these are angles on the same sides of BC
Hence these are angles in the same segment of a circle
A, B, C, D are concyclic Hence D lies on the circle passing througtvA, B and C.
Hence proved.

Question 23.
Solution:
Given : ABCD is a cylic quadrilateral (∠B – ∠D) = 60°
To prove : The small angle of the quad, is 60°
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q23.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q23.2

Question 24.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q24.1
Solution:
Given : ABCD is a quadrilateral in which AD = BC and ∠ ADC = ∠BCD
To prove : A, B, C and D lie on a circle
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q24.2
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q24.3

Question 25.
Solution:
Given : In the figure, two circles intersect each other at D and C
∠BAD = 75°, ∠DCF = x° and ∠DEF = y°
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q25.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q25.2

Question 26.
Solution:
Given : ABCD is a cyclic quadrilateral whose diagonals AC and BD intersect at O at right angle.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q26.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q26.2
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q26.3

Question 27.
Solution:
In a circle, two chords AB and CD intersect each other at E when produced.
AD and BC are joined.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q27.1

Question 28.
Solution:
Given : Two parallel chords AB and CD of a circle BD and AC are joined and produced to meet at E.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q28.1

Question 29.
Solution:
Given : In a circle with centre O, AB is its diameter. ADE and CBE are lines meeting at E such that ∠BAD = 35° and ∠BED = 25°.
To Find : (i) ∠DBC (ii) ∠DCB (iii) ∠BDC
Solution. Join BD and AC,
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q29.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11C Q29.2

Hope given RS Aggarwal Solutions Class 9 Chapter 11 Circle Ex 11C are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Value Based Questions in Science for Class 9 Chapter 3 Atoms and Molecules

Value Based Questions in Science for Class 9 Chapter 3 Atoms and Molecules

These Solutions are part of Value Based Questions in Science for Class 9. Here we have given Value Based Questions in Science for Class 9 Chapter 3 Atoms and Molecules

Question 1.
Kamla prepared aqueous solutions of barium chloride and sodium sulphate. She weighed them separately and then mixed them in a beaker. A white precipitate was immediately formed. She filtered the precipitate, dried it and then weighed it. After reading this narration, answer the following questions :

  1. Will the weight of the precipitate be the same as that of the reactants before mixing ?
  2. If not, what she should have done ?
  3. Which law of chemical combination does this support ?
  4. What is the value based information associated with it ?

Answer:

  1. No, it will not be the same.
  2. She should have weighed the total contents of the beaker after the reaction and not the precipitate alone.
  3. It supports the law of conservation of mass.
  4. Whenever the law of conservation of mass is to be verified in the laboratory, total mass of the reactants and also of products should be taken into account. Moreover, none of the species be allowed to leave the container.

More Resources

Question 2.
In order to verify the law of conservation of mass, a student mixed 6.3 g of sodium carbonate and 15.0 g of ethanoic acid in a conical flask. After experiment, he weighed the flask again. The weight of the residue in the flask was only 18.0 g. He approached the teacher who guided him to carry the experiment in a closed flask with a cork. There was no difference in weight of the flask before and after the experiment.

  1. What was the mistake committed by the student ?
  2. Why did not the two weights match earlier ?
  3. How did the teacher help him ?
  4. What lesson was learnt by the student ?

Answer:

  1. He was carrying the experiment in an open flask.
  2. CO2 gas evolved in the reaction escaped from the flask
    2CH3COOH + Na2CO3 —-> 2CH3COONa + H2O + CO2
  3. Teacher asked him to cork the flask the moment the reactants were mixed.
  4. The student learnt that in future he should not carry the experiment relating to the law of conservation of mass in an open container, particularly when one or more reactants or products are in the gaseous state.

Question 3.
A student was asked by his teacher a verify the law of conservation of mass in the laboratory. He prepared 5% aqueous solutions of NaCl and Na2SO4. He mixed 10 mL of both these solutions in a conical flask. He weighed the flask on a balance. He then stirred the flask with a rod and weighed it after sometime. There was no change in mass. Read this narration and answer the questions given below :

  1. Was the student able to verify the law of conservation of mass ?
  2. If not, what was the mistake committed by him ?
  3. In your opinion, what he should have done ?
  4. What is the value based information associated with this ?

Answer:

  1. No, he could not verify the law of conservation of mass inspite of the fact that there was no change in mass.
  2. No chemical reaction takes place between NaCl and Na2SO4. This means that no reaction actually took place in the flask.
  3. He should have performed the experiment by using aqueous solutions of BaCl2 and Na2SO4. A chemical reaction takes place in this case and a white precipitate of BaSO4 is formed.
  4. While working in the chemistry laboratory, a student must select those chemical substances which actually react with each other. Only then products will be formed.

Question 4.
Dalton was the first scientist to introduce symbols for the known elements. Modern symbols were given by J.J. Berzelius. A symbol in general may be defined as the short hand representation of the name of an element.

  1. How do symbols help in identifying elements ?
  2. Do we use symbols in daily life ?
  3. What values do you attach for using symbols ?

Answer:

  1. All the known elements are identified by their symbols.
    For example, Symbol of calcium = Ca; Symbol of copper = Cu; Symbol of iron= Fe
  2. Yes, these are very common in daily life. For example, all road signs such as diversions, dangerous, zones etc. are indicated by symbols. In playground, umpires, signify the various happenings such as ‘LBW’, ‘Out’ etc. in circket by symbols.
  3. Symbols for road signs save many lives. The names of many complicated compounds are shown by the formulae which are collection of symbols. The chemical composition of all madicines are shown either on the strips or on the bottles by their formulae.

Question 5.
Mole concept is an important tool for dealing with chemical calculations. The elements have atomic masses while compounds have molecular masses or molar masses. Mole is in fact, a collection of Avogadro’s number (NA) of the particles of a substance whether element or compound. The value of Avogadro’s number is 6-022 x 1023.

  1. Why is mole commonly called chemist’s dozen ?
  2. What is the value associated with the term mole ?

Answer:

  1. Just as a dozen represents 12 articles, a mole represents 6.022 x 1023 or Avogadro’s number of particles. Therefore, it has been rightly called chemist’s dozen.
  2. Since particles such as atoms, ions or molecules are very extremely small in size, it is very difficult to identify and express them individually. These are collectively represented as mole. For example, 3.011 x 1023 molecules of CO2 gas are shown as 0.5 mole which is very simple.

Hope given Value Based Questions in Science for Class 9 Chapter 3 Atoms and Molecules are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B

RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Solutions Class 9 Chapter 11 Circle Ex 11B.

Other Exercises

Question 1.
Solution:
(i) O is the centre of the circle
∠OAB = 40°, ∠OCB = 30°
Join OB.
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q1.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q1.2
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q1.3

Question 2.
Solution:
O is the centre of the cirlce and ∠AOB = 70°
∵ Arc AB subtends ∠AOB at the centre and ∠ACB at the remaining part of the circle.
∵ ∠ACB = \(\frac { 1 }{ 2 } \) ∠AOB = \(\frac { 1 }{ 2 } \) x 70°
=> ∠ACB = 35°
or ∠OCA = 35°
In ∆OAC,
OA = OC (radii of the same circle)
∴ ∠OAC = ∠OCA = 35° Ans.

Question 3.
Solution:
In the figure, O is the centre of the circle. ∠PBC = 25°, ∠APB =110°
∠ APB + ∠ BPC = 180° (Linear pair)
=> 110° + ∠ BPC = 180°
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q3.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q3.2

Question 4.
Solution:
O is the centre of the circle
∠ABD = 35° and ∠B AC = 70°
BOD is the diameter of the circle
∠BAD = 90° (Angle in a semi circle)
But ∠ADB + ∠ABD + ∠BAD = 180° (Angles of a triangle)
=> ∠ADB + 35° + 90° = 180°
=> ∠ADB + 125° = 180°
=> ∠ADB = 180° – 125° = 55°
But ∠ACB = ∠ADB (Angles in the same segment of the circle)
∠ACB = 55° Ans.

Question 5.
Solution:
O is the centre of a circle and ∠ACB = 50°
∴ arc AB subtends ∠ AOB at the centre and ∠ ACB at the remaining part of the circle.
∴ ∠ AOB = 2 ∠ ACB
= 2 x 50° = 100
∴ OA = OB (radii of the same circle)
∴ ∠ OAB = ∠ OBA (Angles opposite to equal sides)
Now in ∆ OAB,
∠ OAB + ∠ OBA + ∠ AOB = 180°
=> ∠ OAB + ∠ OAB + ∠ AOB = 180° (∠OAB = ∠OBA)
=> 2 ∠ OAB + 100°= 180°
=> 2 ∠ OAB = 180° – 100° = 80°
=> ∠OAB = \(\frac { { 80 }^{ o } }{ 2 } \) = 40°
Hence, OAB = 40° Ans.

Question 6.
Solution:
(i) In the figure,
∠ABD = 54° and ∠BCD = 43°
∠BAD = ∠BCD (Angles in the same segment of a circle)
∠BAD = 43°
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q6.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q6.2

Question 7.
Solution:
Chord DE || diameter AC of the circle with centre O.
∠CBD = 60°
∠CBD = ∠ CAD
(Angles in the same segment of a circle)
∠CAD = 60°
Now in ∆ ADC,
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q7.1

Question 8.
Solution:
In the figure,
chord CD || diameter AB of the circle with centre O.
∠ ABC = 25°
Join CD and DO.
AB || CD
∠ ABC = ∠ BCD (alternate angles)
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q8.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q8.2

Question 9.
Solution:
AB and CD are two straight lines passing through O, the centre of the circle and ∠AOC = 80°, ∠CDE = 40°
∠ CED = 90° (Angle in a semi circle)
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q9.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q9.2

Question 10.
Solution:
O is the centre of the circle and ∠AOB = 40°, ∠BDC = 100°
Arc AB subtends ∠AOB at the centre and ∠ ACB at the remaining part of the circle
∠ AOB = 2 ∠ ACB
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q10.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q10.2

Question 11.
Solution:
Chords AC and BD of a circle with centre O, intersect each other at E at right angles.
∠ OAB = 25°. Join OB.
In ∆ OAB,
OA = OB (radii of the same circle)
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q11.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q11.2

Question 12.
Solution:
In the figure, O is the centre of a circle ∠ OAB = 20° and ∠ OCB = 55° .
In ∆ OAB,
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q12.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q12.2

Question 13.
Solution:
Given : A ∆ ABC is inscribed in a circle with centre O and ∠ BAC = 30°
To Prove : BC = radius of the circle
Const. Join OB and OC
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q13.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q13.2

Question 14.
Solution:
In a circle with centre O and PQ is its diameter. ∠PQR = 65°, ∠SPR = 40° and ∠PQM = 50°
(i) ∠PRQ = 90° (Angle in a semicircle) and ∠PQR + ∠RPQ + ∠PQR = 180° (Angles of a triangle)
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q14.1
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q14.2
RS Aggarwal Class 9 Solutions Chapter 11 Circle Ex 11B Q14.3

Hope given RS Aggarwal Solutions Class 9 Chapter 11 Circle Ex 11B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules

HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules

These Solutions are part of HOTS Questions for Class 9 Science. Here we have given HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules

Question 1.
(a) An element shows variable valencies 4 and 6. Write the formulae of its two oxides.
(b) An element forms an oxide A2O5.
(i) What is the valency of the element A ?
(ii) What will be the formula of the chloride of the element ?
Answer:
(a) Let the element be represented by the symbol E.
Formula of oxide in which valency of E is 4 = E2O4 or EO2
Formula of oxide in which valency of E is 6 = E2O6 or EO3
(b) Formula of oxide of the element = A2O5
(i) The valency of the element A in the oxide = 5+
(ii) The formula of the chloride of the element A = ACl5.

More Resources

Question 2.
On analysing an impure sample of sodium chloride, the percentage of chlorine was found to be 45.5 What is the percentage of pure sodium chloride in the sample ?
Answer:
HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules 1

Question 3.
(a) Why does not the atomic mass of an element represent the actual mass of its atom ?
(b) The atomic mass of an element is in fraction. What does it mean ?
(c) Why is the value of Avogadro’s number 6.022 x 1023 and not any other value ?
(d) Does one gram mole of a gas occupy 24.4 L under all conditions of temperature and pressure ?
Answer:
(a) Atoms of different elements are very small in size and their actual mass are extremely small. For example, the mass of an atom of hydrogen is 1.67 x 10-27 kg. To solve this problem, we consider the relative atomic masses of the elements. The relative atomic mas of hydrogen is 1 u and its corresponding gram atomic mass is 1 g.
(b) If the atomic mass of an element is in fraction, this means that it exists in the form of isotopes. The atomic mass is the average atomic mass and is generally fractional.
(c) It represents the number of atoms in one gram atom of an element or the number of molecules in one gram mole of a compound. If we divide the atomic mass of an element by actual mass of its atom, the value is 6.022 x 1023. Similarly, by dividing the molecular mass of a compound by the actual mass of its molecule, the same result is obtained.
(d) No, one gram mole of a gas occupies a volume of 22.4 L only under N.T.P. conditions i.e. at 273 K temperature and under 760 mm pressure.

Question 4.
A flask P contains 0.5 g mole of oxygen gas. Another flask Q contains 0.4 mole of ozone gas. Which of the two flasks contains greater number of oxygen atoms ?
Answer:
HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules 2

Question 5.
What weight of calcium contains the same number of atoms as are present in 3.2 g of sulphur ?
Answer:
HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules 3

Question 6.
Silicon forms a compound with chlorine in which 5.6 g of silicon is combined with 21.3 g of chlorine..
Calculate the formula of the compound (Atomic mass : Si = 28 : Cl = 35-5).
Answer:
HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules 4
The simplest whole number ratios of different elements are : Si : Cl : : 1 : 3
The formula of the compound = SiCl3.

Question 7:
In magnesium sulphide, the ratio by mass of Mg and S is 3 : 4. What is the ratio of the number of Mg and S atoms ?
Answer:
HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules 5

Hope given HOTS Questions for Class 9 Science Chapter 3 Atoms and Molecules are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2

RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2

Other Exercises

Question 1.
Write two solutions for each of the following equations
(i) 3x + 4y = 7           
(ii) x = 6y
(iii) x + πy = 4           
(iv) \(\frac { 2 }{ 3 }\) x – y = 4
Solution:

RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2 Q1.1
(ii)  x = 6y
Let y = 0, then
x = 6 x 0 = 0
∴ x = 0, y = 0
x = 0, y = 0 are the solutions of the equation
Let y= 1, then
x = 6 x 1 = 0                          –
∴ x = 6, y = 1 are the solutions of the equation.
(iii) x + πy = 4
Let x = 4, then
4 + πy = 4
⇒ πy = 4- 4 = 0
∴ y = 0
∴ x = 4, y = 0 are the solutions of the equation
Let x = 0, then
0 + πy = 4 ⇒ πy = 4
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2 Q1.2

Question 2.
Check which of the following are solutions of the equations 2x – y =6 and which are not
(i) (3, 0)                    
(ii) (0, 6)
(iii) (2,-2)                 
(iv)(\(\sqrt { 3 } \) ,0)
(v) (\(\frac { 1 }{ 2 }\) ,-5)
Solution:
Equation is 2x – y = 6
(i) Solution is (3, 0) i.e. x = 3, y = 0
Substituting the value of x and y in the equation
2 x 3 – 0 = 6 ⇒ 6 – 0 = 6
6 = 6
Which is true
∴  (3, 0) is the solutions.
(ii) (0, 6) i.e. x =0, y =6
Substituting the value of x and y in the equation
2 x 0 – 6 = 6 ⇒  0-6 = 6
⇒ -6 = 6  which is not true
∴   (0, 6) is not its solution’
(iii) (2, -2) i.e. x = 2, y = -2
Substituting the value of x and y in the equation
2 x 2 – (-2) = 6 ⇒ 4 + 2 = 6
⇒ 6 = 6 which is true.
∴   (2, -2) is the solution.
(iv) (\(\sqrt { 3 } \),0) i.e. x = \(\sqrt { 3 } \) , y = 0,
Substituting the value of x and y in the equations
2 x \(\sqrt { 3 } \)-(0) = 6
⇒ 2\(\sqrt { 3 } \)-0 = 6
⇒  2 \(\sqrt { 3 } \)  6 which is not true
∴ (\(\sqrt { 3 } \) > 0) is not the solution.
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2 Q2.1

Question 3.
If x = -1, y = 2 is a solution of the equation 3x + 4y =k  Find the value of k.
Solution:
x = -1, y = 2
The equation is 3x + 4y = k
Substituting the value of x and y in it
3 x (-1) + 4 (2) = k
⇒ -3+ 8 = k
⇒  5 = k
∴ k = 5

Question 4.
Find the value of λ if x = -λ and y = \(\frac { 5 }{ 2 }\) is a solution of the equation x + 4y – 7 = 0.
Solution:
 x = -λ, y= \(\frac { 5 }{ 2 }\)
Equation is x + 4y – 7 = 0
Substituting the value of x and y,
-λ  + 4 x \(\frac { 5 }{ 2 }\) -7 = 0
⇒  -λ + 10 – 7 = 0
⇒  -λ +3 = 0
∴  -λ = -3
⇒  λ = 3
Hence λ = 3

Question 5.
If x = 2α + 1 and y = α – 1 is a solution of the equation 2x – 3y + 5 = 0, find the value of α.
Solution:
x = 2α + 1, y = α – 1
are the solution of the equation 2x – 3y + 5 – 0
Substituting the value of x and y
2(2α + 1) -3 (α – 1) + 5 = 0
⇒  4α+ 2-3α+ 3 + 5 = 0
⇒ α+10 = 0
⇒ α = -10
Hence α = -10

Question 6.
If x = 1, and y = 6 is a solution of the equation 8x – ay + a2 = 0, find the values of a.
Solution:
x = 1, y = 6 is a solution of the equation
8x – ay + a2 = 0
Substituting the value of x and y,
8 x 1-a x 6 + a2 = o
⇒  8 – 6a + a2 = 0
⇒  a2 – 6a + 8 = 0
⇒  a2 – 2a -4a + 8 = 0
⇒  a (a – 2) – 4 (a – 2) = 0
⇒  (a – 2) (a – 4) = 0
Either a – 2 = 0, then a = 2
or a – 4 = 0, then a = 4
Hence a = 2, 4

Question 7.
Write two solutions of the form x = 0, y = a and x = b, y = 0 for each of the following equations.
(i) 5x – 2y = 10
(ii) -4x + 3y = 12
(iii) 2x + 3y = 24
Solution:
(i)  5x – 2y = 10
Let x = 0, then
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2 Q7.1
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2 Q7.2
RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2 Q7.3

Hope given RD Sharma Class 9 Solutions Chapter 7 Introduction to Euclid’s Geometry Ex 7.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.