RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1

RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1

Other Exercises

Question 1.
If the heights of 5 persons are 140 cm, 150 cm, 152 cm, 158 cm and 161 cm respectively. Find the mean height.
Solution:
Heights of 5 persons are 140 cm, 150 cm, 152 cm, 158 cm and 161 cm
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 1.1

Question 2.
Find the mean of 994, 996, 998, 1002 and 1000.
Solution:
Mean of 994, 996, 998, 1002 and 1000
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 2.1

Question 3.
Find the mean of first five natural numbers.
Solution:
First five natural numbers are 1, 2, 3, 4, 5
∴ Mean = \(\overline { x } =\frac { 1+2+3+4+5 }{ 5 } =\frac { 15 }{ 5 } \) = 3

Question 4.
Find the mean all factors of 10.
Solution:
Factors of 10 = 1, 2, 5, 10
∴ Mean = \(\overline { x } =\frac { 1+2+5+10 }{ 4 } =\frac { 18 }{ 4 } \) = 4.5

Question 5.
Find the mean of first 10 even natural numbers.
Solution:
First 10 even natural numbers are 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
∴ Mean = \(\overline { x } =\frac { 2+4+6+8+10+12+14+16+18+20 }{ 10 } =\frac { 110 }{ 10 } \) = 11

Question 6.
Find the mean of x, x + 2, x + 4, x + 6, x + 8.
Solution:
Sum = x + x + 2+ x + 4 + x + 6 + x + 8 = 5x + 20
∴ Mean = \(\overline { x } =\frac { \sum { { x }_{ i } } }{ n } \frac { 5x+20 }{ 5 } =x+4 \)

Question 7.
Find the mean of first five multiples of 3.
Solution:
First 5 multiples of 3 are = 3, 6, 9, 12, 15
∴ Mean = \(\overline { x } =\frac { 3+6+9+12+15 }{ 5 } =\frac { 45 }{ 5 } \) = 9

Question 8.
Following are the weights (in kg) or 10 new born babies in a hospital on a particular day:
3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6. Find the mean \(\overline { X } \).
Solution:
Weights of 10 new bom babies are 3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6
∴ Mean \(\overline { X } \) = \(\frac { 3.4+3.6+4.2+4.5+3.9+4.1+3.8+4.5+4.4+3.6 }{ 10 } \)
= \(\frac { 40.0 }{ 10 } \) = 4kg

Question 9.
The percentage of marks obtained by students of a class in mathematics are : 64, 36, 47, 23, 0, 19, 81, 93, 72, 35, 3, 1. Find their mean.
Solution:
Percentage of 12 students are 64, 36, 47, 23, 0, 19, 81, 93, 72, 35, 3, 1
∴ Mean \(\overline { X } \) = \(\frac { 64+36+47+23+0+19+81+93+72+35+3+1 }{ 12 } \)
= \(\frac { 474 }{ 12 } \) = 39.5

Question 10.
The numbers of children in 10 families of a locality are : 2, 4, 3, 4, 2, 0, 3, 5, 1, 1, 5. Find the mean number of children per family.
Solution:
Number of children in 10 families are 2, 4, 3, 4, 2, 0, 3, 5, 1, 1, 5
∴ Mean \(\overline { X } \) = \(\frac { 2+4+3+4+2+0+3+5+1+1+5 }{ 10 } \)
= \(\frac { 30 }{ 10 } \) = 3

Question 11.
Explain, by taking a suitable example, how the arithmetic mean alters by (i) adding a constant k to each term, (ii) subtracting a constant k from each them, (iii) multiplying each term by a constant k and (iv) dividing each term by a non-zero constant k.
Solution:
Let x1, x2, x3, x4, x5 are five numbers whose mean is \(\overline { x } \) i.e. = \(\frac { x1+x2+x3+x4+x5 }{ 5 } \) = \(\overline { x } \)
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 11.2
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 11.3
Hence we see that in each case, the mean is changed.

Question 12.
The mean of marks scored by 100 students was found to be 40. Later on its was discovered that a score of 53 was misread as 83. Find the correct mean.
Solution:
Mean score of 100 students = 40
∴Total = 100 x 40 = 4000
Difference in one score by mistake = 83 – 53 = 30
Actual total scores = 4000 – 300 = 3970
Actual mean = \(\frac { 3970 }{ 100 } \) = 39.70 = 39.7

Question 13.
The traffic police recorded the speed (in km/hr) of 10 motorists as 47, 53, 49, 60, 39, 42, 55, 57, 52, 48. Later on an error in recording instrument was found. Find the correct average speed of the motorists if the instrument recorded 5 km/hr less in each case.
Solution:
Speed of 10 motorist as recorded = 47, 53, 49, 60, 39, 42, 55, 57, 52, 48
Total of speed of 10 motorists = 47 + 53 + 49 + 60 + 39 + 42 + 55 +57 + 52 + 48 = 502
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 13.1

Question 14.
The mean of five numbers is 27. If one number is excluded, their mean is 25. Find the excluded number.
Solution:
Mean of 5 numbers = 27
Total = 27 x 5 = 135
By excluded one number, then mean of remaining 4 numbers = 25
Total = 4 x 25 = 100
Excluded number = 135 – 100 = 35

Question 15.
The mean weight per student in a group of 7 students is 55 kg. The individual weights of 6 of them (in kg) are 52, 54, 55, 53, 56 and 54. Find the weight of the seventh student.
Solution:
Mean weight of 7 students = 55 kg
Total weight of 7 students = 55 x 7 kg = 385 kg
Total weights of 6 students among them = 52 + 54 + 55 + 53 + 56 + 54 = 324 kg
Weight of 7th student = 385 – 324 = 61 kg

Question 16.
The mean weight of 8 numbers is 15. If each number is multiplied by 2, what will be the new mean?
Solution:
Weight of 8 numbers =15
By multiplying each number by 2, then the average will be = 15 x 2 = 30
New average = 30

Question 17.
The mean of 5 numbers is 18. If one number is excluded, their mean is 16. Find the excluded number.
Solution:
Mean of 5 numbers = 18
Total = 18 x 5 = 90
By excluding one number, the mean of remaining 5 – 1=4 numbers = 16
Total = 16 x 4 = 64
Excluded number = 90 – 64 = 26

Question 18.
The mean of 200 items was 50. Later on, it was discovered that the two items were misread as 92 and 8 instead of 192 and 88. Find the correct mean.
Solution:
Mean of 200 items = 50
Total = 50 x 200 = 10000
The number were misread as 92 instead of 192 and 8 instead of 88
Difference = 192 – 92 + 88 – 8 = 180
New total = 10000 + 180 = 10180
and new mean = \(\frac { 10180 }{ 200 } \) = 50.9

Question 19.
If M is the mean of x1, x2, xr3, x4, x5 and x6, prove that
(x1 – M) + (x2 – M) + (x3 – M) + (x4 – M) + (x5 – M) + (x6 – M) = 0.
Solution:
∵ M is the mean of x,, x2, x3, x4, x5, x6
Then M = \(\frac { x1+x2+x3+x4+x5+x6 }{ 6 } \)
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 19.1

Question 20.
Durations of sunshine (in hours) in Amritsar for first 10 days of August 1997 as reported by the Meteorological Department are given below:
9.6, 5.2, 3.5, 1.5, 1.6, 2.4, 2.6, 8.4, 10.3, 10.9
(i) Find the mean \(\overline { X }\)
(ii) Verify that \( \sum _{ i=1 }^{ 10 }{ \left( { x }_{ i }-\overline { X } \right) } \) = 0
Solution:
Duration of sun shine for 10 days (in hours)
= 9.6, 5.2, 3.5, 1.5, 1.6, 2.4, 2.6, 8.4, 10.3, 10.9
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 20.1
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 20.2

Question 21.
Find the values of n and X in each of the following cases:
(i) \(\sum _{ i=1 }^{ n }{ \left( { x }_{ i }-12 \right) } =-10\quad and\sum _{ i=1 }^{ n }{ \left( { x }_{ i }-3 \right) } =62\)
(ii) \(\sum _{ i=1 }^{ n }{ \left( { x }_{ i }-10 \right) } =30\quad and\sum _{ i=1 }^{ n }{ \left( { x }_{ i }-6 \right) } =150\)
Solution:
(i) \(\sum _{ i=1 }^{ n }{ \left( { x }_{ i }-12 \right) } =-10\)…(i)
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 21.1
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 21.2
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 21.3

Question 22.
The sums of the deviations of a set of n values x1, x2,… xn measured from 15 and -3 are -90 and 54 respectively. Find the value of n and mean.
Solution:
In first case,
(x1 – 15) + (x2 – 15) + (x3 – 15) + … + (xn – 15) = – 90
=> x1 + x2 + x3 + … + xn – 15 x n = – 90
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 22.1

Question 23.
Find the sum of the deviations of the variate values 3, 4, 6, 7, 8, 14 from their mean.
Solution:
Mean of 3, 4, 6, 7, 8, 14 = \(\frac { 42 }{ 6 } \) = 7
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 23.1

Question 24.
If \(\overline { X } \) is the mean of the ten natural numbers x1, x2, x3, …, x10, show that (x1 – \(\overline { X } \)) + (x2 – \(\overline { X } \)) + … + (x10 – \(\overline { X } \)) = 0.
Solution:
\(\overline { X } \) is the mean of 10 natural numbers
x1, x2, x3, …, x10
RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 24.1

 

Hope given RD Sharma Class 9 Solutions Chapter 24 Measures of Central Tendency Ex 24.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles VSAQS

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles VSAQS

Other Exercises

Question 1.
Define complementary angles.
Solution:
Two angles whose sum is 90°, are called complementary angles.

Question 2.
Define supplementary angles.
Solution:
Two angles whose sum is 180°, are called supplementary angles.

Question 3.
Define adjacent angles.
Solution:
Two angles which have common vertex and one arm common are called adjacent angles.

Question 4.
The complement of an acute angles is…….
Solution:
The complement of an acute angles is an acute angle.

Question 5.
The supplement of an acute angles is………
Solution:
The supplement of an acute angles is a obtuse angle.

Question 6.
The supplement of a right angle is…….
Solution:
The supplement of a right angle is a right angle.

Question 7.
Write the complement of an angle of measure x°.
Solution:
The complement of x° is (90° – x)°

Question 8.
Write the supplement of an angle of measure 2y°.
Solution:
The supplement of 2y° is (180° – 2y)°

Question 9.
If a wheel has six spokes equally spaced, then find the measure of the angle between two adjacent spokes.
Solution:
Total measure of angle around a point = 360°
Number of spokes = 6
∴ Angle between the two adjacent spokes = \(\frac { { 360 }^{ \circ } }{ 6 }\) = 60°

Question 10.
An angle is equal to its supplement. Determine its measure.
Solution:
Let required angle = x°
Then its supplement angle = 180° – x
x = 180° – x
⇒ x + x = 180°
⇒  2x = 180° ⇒  x = \(\frac { { 180 }^{ \circ } }{ 2 }\) = 90°
∴ Required angle = 90°

Question 11.
An angle is equal to five times its complement. Determine its measure.
Solution:
Let required measure of angle = x°
∴  Its complement angle = 90° – x
∴  x = 5(90° – x)
⇒  x = 450° – 5x
⇒  x + 5x = 450°
⇒  6x = 450°
⇒ x = \(\frac { { 450 }^{ \circ } }{ 6 }\) = 75°
∴ Required angle = 75°

Question 12.
How many pairs of adjacent angles are formed when two lines intersect in a point?
Solution:
If two lines AB and CD intersect at a point O, then pairs of two adjacent angles are, ∠AOC and ∠COB, ∠COB and ∠BOD, ∠BOD and DOA, ∠DOA and ∠ZAOC
i.e, 4 pairs
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles VSAQS Q12.1

Hope given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 25 Probability MCQS

RD Sharma Class 9 Solutions Chapter 25 Probability MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 25 Probability MCQS

Other Exercises

Mark the correct alternative in each of the following:

Question 1.
The probability of an impossible event is
(a) 1
(b) 0
(c) less than 0
(d) greater than 1
Solution:
The probability of an impossible event is 0 (b)

Question 2.
The probability on a certain event is
(a) 0
(b) 1
(c) greater than 1
(d) less than 1
Solution:
The probability of a certain event is 1 (b)

Question 3.
The probability of an event of a trial is
(a) 1
(b) 0
(c) less than 1
(d) more than 1
Solution:
The probability of an even of a trial is less than 1 (c)

Question 4.
Which of the following cannot be the probability of an event?
(a) \(\frac { 1 }{ 3 } \)
(b) \(\frac { 3 }{ 5 } \)
(c) \(\frac { 5 }{ 3 } \)
(d) 1
Solution:
The probability of an event is less than 1
\(\frac { 5 }{ 3 } \) i.e .\(1\frac { 2 }{ 3 } \) is not the probability

Question 5.
Two coins are tossed simultaneously. The probability of getting atmost one head is
(a) \(\frac { 1 }{ 4 } \)
(b) \(\frac { 3 }{ 4 } \)
(c) \(\frac { 1 }{ 2 } \)
(d) \(\frac { 1 }{ 4 } \)
Solution:
Total number of possible events (n) = 2 + 2 = 4
Number of events coming at the most 1 head (m) 2 times + 1 times = 3
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 3 }{ 4 } \) (b)

Question 6.
A coin is tossed 1000 times, if the probability of getting a tail is 3/8, how many times head is obtained?
(a) 525
(b) 375
(c) 625
(d) 725
Solution:
No. of times a coin is tossed (n) = 1000
Probability of getting a tail = \(\frac { 3 }{ 8 } \)
Let No. of tail come = x
Probability P(A) = \(\frac { m }{ n } =\frac { x }{ 1000 } \)
\(\frac { x }{ 1000 } \) = \(\frac { 3 }{ 8 } \)
=> \(\frac { x }{ 1000 } =\frac { 3 }{ 8 } \) => \(\frac { 3X1000 }{ 8 } =3X125\)
=> x = 375
∴ No. of heads are obtained = 1000 – 375 = 625 (c)

Question 7.
A dice is rolled 600 times and the occurrence of the outcomes 1, 2, 3, 4, 5 and 6 are given below:
RD Sharma Class 9 Solutions Chapter 25 Probability MCQS 7.1
The probability of getting a prime number is
(a)\(\frac { 1 }{ 3 } \)
(b)\(\frac { 2 }{ 3 } \)
(c)\(\frac { 49 }{ 60 } \)
(d)\(\frac { 39 }{ 125 } \)
Solution:
Total number of times a dice is rolled (n) = 600
RD Sharma Class 9 Solutions Chapter 25 Probability MCQS 7.2
Now total number of times getting a prime number i.e. 2, 3, 5, (m) = 30 + 120 + 50 = 200
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 200 }{ 600 } \) = \(\frac { 1 }{ 3 } \) (a)

Question 8.
The percentage of attendance of different classes in a year in a school is given below:
RD Sharma Class 9 Solutions Chapter 25 Probability MCQS 8.1
What is the probability that the class attendance is more than 75%?
(a) \(\frac { 1 }{ 6 } \)
(b) \(\frac { 1 }{ 3 } \)
(c) \(\frac { 5 }{ 6 } \)
(d) \(\frac { 1 }{ 2 } \)
Solution:
Percentage of attendance of different classes
RD Sharma Class 9 Solutions Chapter 25 Probability MCQS 8.2
Total attendance more than 75% (m) VIII,VII and VI = 3 classes
and total number of classes (n) = 6
Probability P(A) = \(\frac { 3 }{ 6 } \) = \(\frac { 1 }{ 2 } \).

Question 9.
A bag contains 50 coins and each coin is marked from 51 to 100. One coin is picked at random.
The probability that the number on the coin is not a prime number, is
(a) \(\frac { 1 }{ 5 } \)
(b) \(\frac { 3 }{ 5 } \)
(c) \(\frac { 2 }{ 5 } \)
(d) \(\frac { 4 }{ 5 } \)
Solution:
Total number of coins (n) = 50
Prime numbers between 51 to 100 are 53, 59, 6, 67, 71, 73, 79, 83, 89, 97 = 10
Numbers which are not primes (m) = 50 – 10 = 40
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 40 }{ 50 } \) = \(\frac { 4 }{ 5 } \)(d)

Question 10.
In a football match, Ronaldo makes 4 pals from 10 penalty kids. The probability of converting a penalty kick into a goal by Ronaldo,is
(a) \(\frac { 1 }{ 4 } \)
(b) \(\frac { 1 }{ 6 } \)
(c) \(\frac { 1 }{ 3 } \)
(d) \(\frac { 2 }{ 5 } \)
Solution:
No. of penalty kicks (n) = 10
No. of goal scored (m) = 4
Probability of converting a penally Into goals P(A) = \(\frac { 4 }{ 10 } \) = \(\frac { 2 }{ 5 } \)(d)

Hope given RD Sharma Class 9 Solutions Chapter 25 Probability MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS

RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS

Other Exercises

Question 1.
Define a trial.
Solution:
When we perform an experiment, it is called a trial of the experiment.

Question 2.
Define an elementary event.
Solution:
An outcome of a trial of an experiment is called an elementary event.

Question 3.
Define an event.
Solution:
An event association to a random experiment is said to occur in a trial.

Question 4.
Define probability of an event.
Solution:
In n trials of a random experiment if an event A happens m times, then probability of happening
of A is given by P(A) = \(\frac { m }{ n } \)

Question 5.
A bag contains 4 white balls and some red balls. If the probability of drawing a white ball from the bag is \(\frac { 2 }{ 5 } \), find the number of red balls in the bag
Solution:
No. of white balls = 4
Let number of red balls = x
Then total number of balls (n) = 4 white + x red = (4 + x) balls
RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS 5.1

Question 6.
A die is thrown 100 times. If the probability of getting an even number is \(\frac { 2 }{ 5 } \). How many times an odd number is obtained?
Solution:
Total number of a die is thrown = 100
Let an even number comes x times, then probability of an even number = \(\frac { x }{ 100 } \)
RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS 6.1

Question 7.
Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes
RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS 7.1
Find the probability of getting at most two heads.
Solution:
Total number of three coins are tossed (n) = 200
Getting at the most 2 heads (m) = 72 + 77 + 28 = 177
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 177 }{ 200 } \)

Question 8.
In the Q. No. 7, what is the probability of getting at least two heads?
Solution:
Total number of possible events = 200
No. of events getting at the least = 2 heads (m) = 23 + 72 = 95
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 95 }{ 200 } \) = \(\frac { 19 }{ 40 } \)

Hope given RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4

Other Exercises

Question 1.
In the figure, AB || CD and ∠1 and ∠2 are in the ratio 3 : 2. Determine all angles from 1 to 8.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q1.1
Solution:
AB || CD and l is transversal ∠1 : ∠2 = 3 : 2
Let ∠1 = 3x
Then ∠2 = 2x
But ∠1 + ∠2 = 180° (Linear pair)
∴ 3x + 2x = 180° ⇒ 5x = 180°
⇒ x = \(\frac { { 180 }^{ \circ } }{ 5 }\)  = 36°
∴ ∠1 = 3x = 3 x 36° = 108°
∠2 = 2x = 2 x 36° = 72°
Now ∠1 = ∠3 and ∠2 = ∠4 (Vertically opposite angles)
∴ ∠3 = 108° and ∠4 = 72°
∠1 = ∠5 and ∠2 = ∠6 (Corresponding angles)
∴ ∠5 = 108°, ∠6 = 72°
Similarly, ∠4 = ∠8 and
∠3 = ∠7
∴ ∠8 = 72° and ∠7 = 108°
Hence, ∠1 = 108°, ∠2= 72°
∠3 = 108°, ∠4 = 72°
∠5 = 108°, ∠6 = 72°
∠7 = 108°, ∠8 = 12°

Question 2.
In the figure, l, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find ∠l, ∠2 and ∠3.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q2.1
Solution:
l || m || n and p is then transversal which intersects then at X, Y and Z respectively ∠4 = 120°
∠2 = ∠4 (Alternate angles)
∴ ∠2 = 120°
But ∠3 + ∠4 = 180° (Linear pair)
⇒ ∠3 + 120° = 180°
⇒ ∠3 = 180° – 120°
∴ ∠3 = 60°
But ∠l = ∠3 (Corresponding angles)
∴ ∠l = 60°
Hence ∠l = 60°, ∠2 = 120°, ∠3 = 60°

Question 3.
In the figure, if AB || CD and CD || EF, find ∠ACE.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q3.1
Solution:
Given : In the figure, AB || CD and CD || EF
∠BAC = 70°, ∠CEF = 130°
∵ EF || CD
∴ ∠ECD + ∠CEF = 180° (Co-interior angles)
⇒ ∠ECD + 130° = 180°
∴ ∠ECD = 180° – 130° = 50°
∵ BA || CD
∴ ∠BAC = ∠ACD (Alternate angles)
∴ ∠ACD = 70° (∵ ∠BAC = 70°)
∵ ∠ACE = ∠ACD – ∠ECD = 70° – 50° = 20°

Question 4.
In the figure, state which lines are parallel and why.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q4.1
Solution:
In the figure,
∵ ∠ACD = ∠CDE = 100°
But they are alternate angles
∴ AC || DE

Question 5.
In the figure, if l || m,n|| p and ∠1 = 85°, find ∠2.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q5.1
Solution:
In the figure, l || m, n|| p and ∠1 = 85°
∵ n || p
∴ ∠1 = ∠3 (Corresponding anlges)
But ∠1 = 85°
∴ ∠3 = 85°
∵ m || 1
∠3 + ∠2 = 180° (Sum of co-interior angles)
⇒ 85° + ∠2 = 180°
⇒ ∠2 = 180° – 85° = 95°

Question 6.
If two straight lines are perpendicular to the same line, prove that they are parallel to each other.
Solution:
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q6.1

Question 7.
Two unequal angles of a parallelogram are in the ratio 2:3. Find all its angles in degrees.
Solution:
In ||gm ABCD,
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q7.1
∠A and ∠B are unequal
and ∠A : ∠B = 2 : 3
Let ∠A = 2x, then
∠B = 3x
But ∠A + ∠B = 180° (Co-interior angles)
∴ 2x + 3x = 180°
⇒ 5x = 180°
⇒ x = \(\frac { { 180 }^{ \circ } }{ 5 }\)  = 36°
∴ ∠A = 2x = 2 x 36° = 72°
∠B = 3x = 3 x 36° = 108°
But ∠A = ∠C and ∠B = ∠D (Opposite angles of a ||gm)
∴ ∠C = 72° and ∠D = 108°
Hence ∠A = 72°, ∠B = 108°, ∠C = 72°, ∠D = 108°

Question 8.
In each of the two lines is perpendicular to the same line, what kind of lines are they to each other?
Solution:
AB ⊥ line l and CD ⊥ line l
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q8.1
∴ ∠B = 90° and ∠D = 90°
∴ ∠B = ∠D
But there are corresponding angles
∴ AB || CD

Question 9.
In the figure, ∠1 = 60° and ∠2 = (\(\frac { 2 }{ 3 }\))3 a right angle. Prove that l || m.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q9.1
Solution:
In the figure, a transversal n intersects two lines l and m
∠1 = 60° and
∠2 = \(\frac { 2 }{ 3 }\) rd of a right angle 2
= \(\frac { 2 }{ 3 }\) x 90° = 60°
∴ ∠1 = ∠2
But there are corresponding angles
∴ l || m

Question 10.
In the figure, if l || m || n and ∠1 = 60°, find ∠2.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q10.1
Solution:
In the figure,
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q10.2
l || m || n and a transversal p, intersects them at P, Q and R respectively
∠1 = 60°
∴ ∠1 = ∠3 (Corresponding angles)
∴ ∠3 = 60°
But ∠3 + ∠4 = 180° (Linear pair)
60° + ∠4 = 180° ⇒ ∠4 = 180° – 60°
∴ ∠4 = 120°
But ∠2 = ∠4 (Alternate angles)
∴ ∠2 = 120°

Question 11.
Prove that the straight lines perpendicular to the same straight line are parallel to one another.
Solution:
Given : l is a line, AB ⊥ l and CD ⊥ l
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q11.1
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q11.2

Question 12.
The opposite sides of a quadrilateral are parallel. If one angle of the quadrilateral is 60°, find the other angles.
Solution:
In quadrilateral ABCD, AB || DC and AD || BC and ∠A = 60°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q12.1
∵ AD || BC and AB || DC
∴ ABCD is a parallelogram
∴ ∠A + ∠B = 180° (Co-interior angles)
60° + ∠B = 180°
⇒ ∠B = 180°-60°= 120°
But ∠A = ∠C and ∠B = ∠D (Opposite angles of a ||gm)
∴ ∠C = 60° and ∠D = 120°
Hence ∠B = 120°, ∠C = 60° and ∠D = 120°

Question 13.
Two lines AB and CD intersect at O. If ∠AOC + ∠COB + ∠BOD = 270°, find the measure of ∠AOC, ∠COB, ∠BOD and ∠DOA.
Solution:
Two lines AB and CD intersect at O
and ∠AOC + ∠COB + ∠BOD = 270°
But ∠AOC + ∠COB + ∠BOD + ∠DOA = 360° (Angles at a point)
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q13.1
∴ 270° + ∠DOA = 360°
⇒ ∠DOA = 360° – 270° = 90°
But ∠DOA = ∠BOC (Vertically opposite angles)
∴ ∠BOC = 90°
But ∠DOA + ∠BOD = 180° (Linear pair)
⇒ 90° + ∠BOD = 180°
∴ ∠BOD= 180°-90° = 90° ,
But ∠BOD = ∠AOC (Vertically opposite angles)
∴ ∠AOC = 90°
Hence ∠AOC = 90°,
∠COB = 90°,
∠BOD = 90° and ∠DOA = 90°

Question 14.
In the figure, p is a transversal to lines m and n, ∠2 = 120° and ∠5 = 60°. Prove that m || n.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q14.1
Solution:
Given : p is a transversal to the lines m and n
Forming ∠l, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7 and ∠8
∠2 = 120°, and ∠5 = 60°
To prove : m || n
Proof : ∠2 + ∠3 = 180° (Linear pair)
⇒ 120°+ ∠3 = 180°
⇒ ∠3 = 180°- 120° = 60°
But ∠5 = 60°
∴ ∠3 = ∠5
But there are alternate angles
∴ m || n

Question 15.
In the figure, transversal l, intersects two lines m and n, ∠4 = 110° and ∠7 = 65°. Is m || n?
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q15.1
Solution:
A transversal l, intersects two lines m and n, forming ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7 and ∠8
∠4 = 110° and ∠7 = 65°
To prove : Whether m || n or not
Proof : ∠4 = 110° and ∠7 = 65°
∠7 = ∠5 (Vertically opposite angles)
∴ ∠5 = 65°
Now ∠4 + ∠5 = 110° + 65° = 175°
∵ Sum of co-interior angles ∠4 and ∠5 is not 180°.
∴ m is not parallel to n

Question 16.
Which pair of lines in the figure are parallel? Give reasons.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q16.1
Solution:
Given : In the figure, ∠A = 115°, ∠B = 65°, ∠C = 115° and ∠D = 65°
∵ ∠A + ∠B = 115°+ 65°= 180°
But these are co-interior angles,
∴ AD || BC
Similarly, ∠A + ∠D = 115° + 65° = 180°
∴ AB || DC

Question 17.
If l, m, n are three lines such that l ||m and n ⊥ l, prove that n ⊥ m.
Solution:
Given : l, m, n are three lines such that l || m and n ⊥ l
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q17.1
To prove : n ⊥ m
Proof : ∵ l || m and n is the transversal.
∴ ∠l = ∠2 (Corresponding angles)
But ∠1 = 90° (∵ n⊥l)
∴ ∠2 = 90°
∴ n ⊥ m

Question 18.
Which of the following statements are true (T) and which are false (F)? Give reasons.
(i) If two lines are intersected by a transversal, then corresponding angles are equal.
(ii) If two parallel lines are intersected by a transversal, then alternate interior angles are equal.
(iii) Two lines perpendicular to the same line are perpendicular to each other.
(iv) Two lines parallel to the same line are parallel to each other.
(v) If two parallel lines are intersected by a transversal, then the interior angles on the same side of the transversal are equal.
Solution:
(i) False. Because if lines are parallel, then it is possible.
(ii) True.
(iii) False. Not perpendicular but parallel to each other.
(iv) True.
(v) False. Sum of interior angles on the same side is 180° not are equal.

Question 19.
Fill in the blanks in each of the following to make the statement true:
(i) If two parallel lines are intersected by a transversal then each pair of corresponding angles are ……..
(ii) If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are …….
(iii) Two lines perpendicular to the same line are ……… to each other.
(iv) Two lines parallel to the same line are ……… to each other.
(v) If a transversal intersects a pair of lines in such away that a pair of alternate angles are equal, then the lines are …….
(vi) If a transversal intersects a pair of lines in such away that the sum of interior angles on the same side of transversal is 180°, then the lines are …….
Solution:
(i) If two parallel lines are intersected by a transversal, then each pair of corresponding angles are equal.
(ii) If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are supplementary.
(iii) Two lines perpendicular to the same line are parallel to each other.
(iv) Two lines parallel to the same line are parallel to each other.
(v) If a transversal intersects a pair of lines in such away that a pair of alternate angles are equal, then the lines are parallel.
(vi) If a transversal intersects a pair of lines in such away that the sum of interior angles on the same side of transversal is 180°, then the lines are parallel.

Question 20.
In the figure, AB || CD || EF and GH || KL. Find ∠HKL.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q20.1
Solution:
In the figure, AB || CD || EF and KL || HG Produce LK and GH
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q20.2
∵ AB || CD and HK is transversal
∴ ∠1 = 25° (Alternate angles)
∠3 = 60° (Corresponding angles)
and ∠3 = ∠4 (Corresponding angles)
= 60°
But ∠4 + ∠5 = 180° (Linear pair)
⇒ 60° + ∠5 = 180°
⇒ ∠5 = 180° – 60° = 120°
∴ ∠HKL = ∠1 + ∠5 = 25° + 120° = 145°

Question 21.
In the figure, show that AB || EF.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q21.1
Solution:
Given : In the figure, AB || EF
∠BAC = 57°, ∠ACE = 22°
∠ECD = 35° and ∠CEF =145°
To prove : AB || EF,
Proof : ∠ECD + ∠CEF = 35° + 145°
= 180°
But these are co-interior angles
∴ EF || CD
But AB || CD
∴ AB || EF

Question 22.
In the figure, PQ || AB and PR || BC. If ∠QPR = 102°. Determine ∠ABC. Give reasons.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q22.1
Solution:
In the figure, PQ || AB and PR || BC
∠QPR = 102°
Produce BA to meet PR at D
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q22.2
∵ PQ || AB or DB
∴ ∠QPR = ∠ADR (Corresponding angles)
∴∠ADR = 102° or ∠BDR = 102°
∵ PR || BC
∴ ∠BDR + ∠DBC = 180°
(Sum of co-interior angles) ⇒ 102° + ∠DBC = 180°
⇒ ∠DBC = 180° – 102° = 78°
⇒ ∠ABC = 78°

Question 23.
Prove that if the two arms of an angle are perpendicular to the two arms of another angle, then the angles are either equal or supplementary.
Solution:
Given : In two angles ∠ABC and ∠DEF AB ⊥ DE and BC ⊥ EF
To prove: ∠ABC + ∠DEF = 180° or ∠ABC = ∠DEF
Construction : Produce the sides DE and EF of ∠DEF, to meet the sides of ∠ABC at H and G.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q23.1
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q23.2
Proof: In figure (i) BGEH is a quadrilateral
∠BHE = 90° and ∠BGE = 90°
But sum of angles of a quadrilateral is 360°
∴ ∠HBG + ∠HEG = 360° – (90° + 90°)
= 360° – 180°= 180°
∴ ∠ABC and ∠DEF are supplementary
In figure (if) in quadrilateral BGEH,
∠BHE = 90° and ∠HEG = 90°
∴ ∠HBG + ∠HEG = 360° – (90° + 90°)
= 360°- 180° = 180° …(i)
But ∠HEF + ∠HEG = 180° …(ii) (Linear pair)
From (i) and (ii)
∴ ∠HEF = ∠HBG
⇒ ∠DEF = ∠ABC
Hence ∠ABC and ∠DEF are equal or supplementary

Question 24.
In the figure, lines AB and CD are parallel and P is any point as shown in the figure. Show that ∠ABP + ∠CDP = ∠DPB.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q24.1
Solution:
Given : In the figure, AB || CD
P is a point between AB and CD PD
and PB are joined
To prove : ∠APB + ∠CDP = ∠DPB
Construction : Through P, draw PQ || AB or CD
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q24.2
Proof: ∵ AB || PQ
∴ ∠ABP = BPQ …(i) (Alternate angles)
Similarly,
CD || PQ
∴ ∠CDP = ∠DPQ …(ii)
(Alternate angles)
Adding (i) and (ii)
∠ABP + ∠CDP = ∠BPQ + ∠DPQ
Hence ∠ABP + ∠CDP = ∠DPB

Question 25.
In the figure, AB || CD and P is any point shown in the figure. Prove that:
∠ABP + ∠BPD + ∠CDP = 360°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q25.1
Solution:
Given : AB || CD and P is any point as shown in the figure
To prove : ∠ABP + ∠BPD + ∠CDP = 360°
Construction : Through P, draw PQ || AB and CD
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q25.2
Proof : ∵ AB || PQ
∴ ∠ABP+ ∠BPQ= 180° ……(i) (Sum of co-interior angles)
Similarly, CD || PQ
∴ ∠QPD + ∠CDP = 180° …(ii)
Adding (i) and (ii)
∠ABP + ∠BPQ + ∠QPD + ∠CDP
= 180°+ 180° = 360°
⇒ ∠ABP + ∠BPD + ∠CDP = 360°

Question 26.
In the figure, arms BA and BC of ∠ABC are respectively parallel to arms ED and EF of ∠DEF. Prove that ∠ABC = ∠DEF.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q26.1
Solution:
Given : In ∠ABC and ∠DEF. Their arms are parallel such that BA || ED and BC || EF
To prove : ∠ABC = ∠DEF
Construction : Produce BC to meet DE at G
Proof: AB || DE
∴ ∠ABC = ∠DGH…(i) (Corresponding angles)
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q26.2
BC or BH || EF
∴ ∠DGH = ∠DEF (ii) (Corresponding angles)
From (i) and (ii)
∠ABC = ∠DEF

Question 27.
In the figure, arms BA and BC of ∠ABC are respectively parallel to arms ED and EF of ∠DEF. Prove that ∠ABC + ∠DEF = 180°.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q27.1
Solution:
Given: In ∠ABC = ∠DEF
BA || ED and BC || EF
To prove: ∠ABC = ∠DEF = 180°
Construction : Produce BC to H intersecting ED at G
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q27.2
Proof: ∵ AB || ED
∴ ∠ABC = ∠EGH …(i) (Corresponding angles)
∵ BC or BH || EF
∠EGH || ∠DEF = 180° (Sum of co-interior angles)
⇒ ∠ABC + ∠DEF = 180° [From (i)]
Hence proved.

Hope given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.