NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms

NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms

These Solutions are part of NCERT Exemplar Solutions for Class 9 Science . Here we have given NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms

Question 1.
Write true (T) or false (F)
(a) Wittaker proposed five kingdom classification.
(b) Monera is divided into Archaebacteria and Eubacteria.
(c) Starting from Class, Species comes before Genus.
(d) Anabaena belongs to kingdom Monera.
(e) Blue-green algae belong to kingdom Protista.
(f) All prokaryotes are classified under Monera.
Answer:
(a) —T
(b) —T,
(c) — F
(d) —T,
(e) —F,
(f) —T.

More Resources

Question 2.
Fill in the blanks :
(a) Fungi show ……………. mode of nutrition.
(b) Cell wall of fungi is made up of ……………… .
(c) Association between blue-green algae and fungi is called as …………….. .
(d) Chemical nature of chidn is ……………… .
(e) ………………. has smallest number of organisms with maximum number of similar characters.
(f) ……………… are called amphibians of plant kingdom.
Answer:
(a) saprophytic
(b) chitin
(c) lichen
(d) carbohydrate
(e) Species
(f) Bryophytes.

Question 3.
You are provided with seeds of Gram, Wheat, Rice Pumpkin, Maize and Pea. Classify them whether they are monocot or dicot ?
Answer:
Gram-Dicot.
Wheat-Monocot.
Rice-Monocot.
Pumpkin-Dicot.
Maize-Monocot.
Pea-Dicot.

Question 4.
Match the items of Column A with items of Column B.
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 1
Answer:
(a) —(ii),
(b) —(i),
(c) — (iv),
(d) —(iii),
(e) — (vi),
(f) —(v),
(g) — (vii).

Question 5.
Match the articles of Column A with those of column B
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 2
Answer:
a —(iii),
b —(ii),
c—(vi),
d —(i),
e —(v),
f—(iv).

Question 6.
Classify the following organisms based on absence or presence of true coelom as acoelomate, pseudocoelomate and coelomate : Spongilla, Sea Anemone, Planaria, Liver Fluke, Wuchereria, Ascaris, Nereis, Earthworm, Scorpion, Birds, Fishes and Horse.
Answer:

  1. Spongilla-Acoelomaxe
  2. Sea Anemone-Acoelomate
  3. Planaria-Acoelomate
  4. Liver Fluke-Acoelomate
  5. Wuchereria— Pseudocoelomate
  6. Aszvzris-Pseudocoelomate
  7. Nereis-Coelomate
  8. Scorpion—Coelomate
  9. Earthworm-Coelomate
  10. Birds-Coelomate
  11. Fishes-Coelomate
  12. Horse-Coelomate.

Question 7.
Endoskeleton of fishes is made up of cartilage and bone. Classify the following fishes as cartilaginous or bony : Xorpedo, Sting Ray, Dog fish, Rohu, Angler Fish, Exocoetus.
Answer:

  1. Xorpedo—Cartilaginous
  2. Sting Ray-Cartilaginous
  3. Dog Fish-Cartilaginous
  4. Rohu-Bony
  5. Angler fish-Bony
  6. Exocoetus—Bony.

Question 8.
Classify the following based on number of chambers in their heart : Rohu, Scolidon, Salamander, Flying Lizard, King Cobra, Crocodile, Ostrich, Pigeon, Bat, Whale.
Answer:

  1. Rohu. 2-Chambered.
  2. Scoliodon. 2-chambered
  3. Frog. 3-chambered
  4. Salamander. 3-chambered
  5. Flying Lizard. Incompletely 4-chambered.
  6. King Cobra. Incompletely 4-chambered.
  7. Crocodile. 4-chambered
  8. Ostrich. 4-chambered
  9. Pigeon. 4-chambered
  10. Bat. 4-chambered
  11. Whale. 4-chambered.

Question 9.
Classify Rohu, Scoliodon, Flying Lizard, King Cobra, Frog, Salamander, Ostrich, Pigeon, Bat, Crocodile and Whale into cold blooded and warm blooded animals.
Answer:

  1. Rohu. Cold blooded
  2. Scoliodon. Cold blooded
  3. Flying Lizard. Cold blooded
  4. King Cobra. Cold Blooded
  5. Frog. Cold blooded
  6. Salamander. Cold blooded
  7. Ostrich. Warm blooded
  8. Pigeon. Warm blooded
  9. Bat. Warm blooded,
  10. Crocodile. Cold blooded
  11. Whale. Warm blooded.

Question 10.
Name two egg laying mammals.
Answer:

  1. Duck Billed Platypus
  2. Echidna

Question 11.
Fill in the blanks.
(a) Five Kingdom classification of living organisms is given by …………….. .
(b) Basic smallest unit of classification is …………. .
(c) Prokaryotes are grouped in kingdom …………. .
(d) Paramoecium is a protistan because of its ……………. .
(e) Fungi do not contain ……………. .
(f ) A fungus ………….. can be seen without microscope.
(g) Common fungus used in preparing the bread is …………… .
(h) Algae and fungi form symbiotic association called ……………. .
Answer:
(a) Whittaker
(b) species
(c) Monera
(d) unicellular eukaryotic nature
(e) chlorophyll
(f) like mushroom
(g) Yeast
(h) lichen.

Question 12.
Give True (T) and Flase (F) :
(a) Gymnosperms differ from angiosperms in having covered seeds.
(b) Non-flowering plants are called cryptogamae.
(c) Bryophytes have conducting tissue.
(d) Funaria is a moss.
(e) Compound leaves are found in many ferns.
(f) Seeds, contain embryo.
Answer:
(a) —F,
(b) —F,
(c) —F,
(d) —T,
(e) —T,
(f) —T.

Question 13.
Give examples for the following :
(a) Bilateral, dorsiventral symmetry is found in ……………. .
(b) Worm causing disease elephantiasis is ……………… .
(c) Open circulatory system is found in ………………. where coelomic cavity is filled with blood.
(d) …………….. are known to have pseudocoelom.
Answer:
(a) Liver Fluke/Lizard
(b) Wuchereria (Filarial Worm)
(c) Arthropods
(d) Nematodes (roundworms).

Question 14.
Label a, b, c and d in the given figure. Give the function of b.
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 3
Answer:
a —pectoral fin.
b —caudal fin.
c—posterior dorsal fin,
d —anterior dorsal fin.
Function of b. Swimming and steering.

Question 15.
Fill the boxes with appropriate characteristics/plant group(s)
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 4
Answer:
a —Thallophyta.
b —Without specialized vascular tissue (non-vascular)
c —Pteridophyta.
d —Phanerogemae.
e —Bear naked seeds.
f—Angiosperms.
g—Have seeds with two cotyledons,
h —Monocots.

Question 16.
Write name of a few thallophytes. Draw a labelled diagram of Spirogyra.
Answer:
Ulothrix, Cladophora, JJlva, Spirogyra, Chara,
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 5

Question 17.
Thallophyta, bryophyta and pteridophyta one called “cryptogams.” Gymnosperms and angiosperns are called “phanerogams”. Discuss why ? Draw one example of gymnosperm. (CCE 2011)
Answer:
(a) Thallophyta, bryophyta and pteridophyta are called cryptogams because they are seedless and possesss inconspicuous or hidden reproductive organs.
(b) Gymnosperms and angiosperms are called phanerogams as they have conspicuous reproductive organs with seeds containing an embryo and reserve food.
(c)
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 6

Question 18.
Define the terms and give one example of each
(a) Bilateral symmetry
(b) Coelom
(c) Triploblastic. (CCE 2011, 2012)
Answer:
(a) Bilateral Symmetry: It is a type of symmetry in which appendages and organs of the body are paired with one of each pair being present in right and left halves of the body, e.g., Lizard, Human.
(b) Coelom: It is mesoderm lined, fluid filled internal body cavity that lies between alimentary canal and skin. It provides a shock proof environment to the contained body organs, e.g, chordates, annelids.
(c) Triploblastic: They are animals having three germinal layers — outer ectoderm, middle mesoderm and inner endoderm, e.g, nematodes, arthropods, star fish.

Question 19.
You are given Leech, Nereis, Scolopendra, Prawn and Scorpio/i. All have segmented body organisation. Will you classify them in one group ? If not give the important characters based on which you will separate these, organisms into different groups.
(CCE 2012)
Answer:
No,

  1. Leech and Nereis have metameric segmentation (external segmentation corresponding to internal segmentation), closed circulatory system and unjointed appendages. They belong to annelida.
  2. Scolopendra, Prawn and Scorpion have open circulatory system and jointed appendages. They belong to arthropoda.

Question 20.
Which organism is more complex and evolved among bacteria, Mushroom and Mango tree ? Give reasons. (CCE 2012)
Answer:
Mango tree is more complex and evolved among bacteria, Mushroom and Mango because of the

  1. Differentiated sporophyte
  2. Vascular tissues
  3. Embryo stage
  4. Seeds present inside fruit. Bacteria are procaryotic. Mushroom is eucaryotic (fungus) but without any differentiation of stem leaves and roots, absence of vascular tissues and embryo stage.

Question 21.
Differentiate between flying Lizard and Bird. Draw the diagram.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 7
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 8
NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 9

Question 22.
List out some common features in Cat, Rat and Bat. (CCE2012, 2013)
Answer:
Cat, Rat and Bat belong to same class of mammalia. The common features are

  1. Hair
  2. Mammary glands
  3. Integumentary glands
  4. Seven cervical vertebrae
  5. Diaphragm
  6. 4-Chambered heart
  7. External pinnae
  8. Vivipary.

Question 23.
Why do we keep both snake and turtle in the same class ? (CCE 2012)
Answer:
Both Snake and Turtle have been placed in class reptilia because of the common characteristics :

  1. Skin without glands
  2. Three chambered (incompletely four chambered) heart
  3. Respiration through lungs
  4. Cold blooded
  5. Hard shelled eggs
  6. Embryo protected by extra embryonal membranes.

Hope given NCERT Exemplar Solutions for Class 9 Science Chapter 7 Diversity in Living Organisms are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS

RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS

Other Exercises

Question 1.
In a parallelogram ABCD, write the sum of angles A and B.
Solution:
In ||gm ABCD,
∠A + ∠B = 180°
(Sum of consecutive angles of a ||gm)
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q1.1

Question 2.
In a parallelogram ABCD, if ∠D = 115°, then write the measure of ∠A.
Solution:
In ||gm ABCD,
∠D = 115°
But ∠A + ∠D = 180°
(Sum of consecutive angles of a ||gm)
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q2.1
⇒ ∠A + 115°= 180° ∠A = 180°- 115°
∴ ∠A = 65°

Question 3.
PQRS is a square such that PR and SQ intersect at O. State the measure of ∠POQ.
Solution:
In a square PQRS,
Diagonals PR and QS intersects each other at O.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q3.1
∵ The diagonals of a square bisect each other at right angles.
∴ ∠POQ = 90°

Question 4.
If PQRS is a square then write the measure of ∠SRP.
Solution:
In square PQRS,
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q4.1
Join PR,
∵Diagonals of a square bisect are opposite angles
∴∠SRP = \(\frac { 1 }{ 2 }\)x ∠SRQ
= \(\frac { 1 }{ 2 }\) x 90° = 45°

Question 5.
If ABCD is a rhombus with ∠ABC = 56°, find the measure of ∠ACD.
Solution:
In rhombus ABCD,
Diagonals bisect each other at 0 at right angles.
∠ABC = 56°
But ∠ABC + ∠BCD = 180° (Sum of consecutive angles)
⇒ 56° + ∠BCD = 180°
⇒ ∠BCD = 180° – 56° = 124°
∵ Diagonals of a rhombus bisect the opposite angle
∴ ∠ACD = \(\frac { 1 }{ 2 }\) ∠BCD = \(\frac { 1 }{ 2 }\) x 124°
= 62°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q5.1

Question 6.
The perimeter of a parallelogram is 22 cm. If the longer side measures 6.5 cm, what is the measure of the shorter side.
Solution:
Perimeter of a ||gm ABCD = 22cm
∴ Sum of two consecutive sides = \(\frac { 22 }{ 2 }\)
= 11cm
i.e. AB + BC = 11 cm
AB = 6.5 cm and let BC = x cm
∴ 6.5 + x = 11 cm
x = 11 – 6.5 = 4.5
∴ Shorter side = 4.5 cm
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q6.1

Question 7.
If the angles of a quadrilateral are in the ratio 3 : 5 : 9 : 13. Then find the measure of the smallest angle.
Solution:
Ratio in the angles of a quadrilateral = 3 : 5 : 9 : 13
Let first angle = 3x
Second angle = 5x
Third angle = 9x
and fourth angle = 13x
∵ The sum of angles of a quadrilateral = 360°
∴ 3x + 5x + 9x + 13x = 360°
⇒ 30x = 360° ⇒ x = \(\frac { { 360 }^{ \circ } }{ 30 }\)  = 12
∴ Smallest angle = 3x = 3 x 12° = 36°

Question 8.
In parallelogram ABCD if ∠A = (3x – 20°), ∠B = (y + 15)°, ∠C = (x + 40°), then find the value of x and y.
Solution:
In a ||gm ABCD,
∠A = (3x – 20°), ∠B = y + 15°,
∠C = x + 40°
Now, ∠A = ∠C (Opposite angles of a ||gm)
⇒ 3x – 20 = x + 40°
⇒ 3x – x = 40° + 20° ⇒ 2x = 60°
⇒ x = \(\frac { { 60 }^{ \circ } }{ 2 }\)  = 30°
and ∠A + ∠B = 180° (Sum of the consecutive angles)
⇒ 3x-20° + y + 15° = 180°
⇒ 3x + y – 5° = 180°
⇒ 3 x 30° +y- 5° = 180°
⇒ 90° – 5° + y = 180
y = 180° – 90° + 5 = 95°
∴ x = 30°, y = 95°

Question 9.
If measures opposite angles of a parallelogram are (60 – x)° and (3x – 4)°, then find the measures of angles of the parallelogram.
Solution:
Opposite angles of a ||gm ABCD are (60 – x)° and (3x – 4°)
But opposite angles of a ||gm are equal, the
60° – x° = 3x – 4° ⇒ 60° + 4° = 3x + x
⇒ 4x = 64° ⇒ x = \(\frac { { 64 }^{ \circ } }{{ 4 }^{ \circ } }\)  = 16°
∴ ∠A = 60° – x = 60° – 16° = 44°
But ∠A + ∠B = 180° (sum of consecutive angle)
⇒ 44° + ∠B = 180°
⇒ ∠B = 180° – 44°
⇒ ∠B = 136°
But ∠A = ∠C and ∠B = ∠D (Opposite angles)
∴ Angles are 44°, 136°, 44°, 136°

Question 10.
In a parallelogram ABCD, the bisectors of ∠A also bisect BC at x, find AB : AD.
Solution:
In ||gm ABCD,
Bisectors of ∠A meets BC at X and BX = XC
Draw XY ||gm AB meeting AD at Y
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q10.1
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q10.2

Question 11.
In the figure, PQRS in an isosceles trapezium find x and y.
Solution:
∵ PQRS is an isosceles trapezium in which
SP = RQ and SR || PQ
∴ ∠P + ∠S = 180° (Sum of co-interior angles)
3x + 2x = 180° ⇒ 5x = 180°
⇒ x = \(\frac { { 180 }^{ \circ } }{ 5 }\)  = 36°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q11.1
But ∠P = ∠Qm (Base angles of isosceles trapezium)
y = 2x = 2 x 36° = 12°
∴ y = 12°
Hence x = 36°, y = 12°

Question 12.
In the figure ABCD is a trapezium. Find the values of x and y.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q12.1
Solution:
In trapezium ABCD,
AB || CD
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q12.2
∴ ∠A + ∠D = 180° (Sum of cointerior angles)
x + 20° + 2x + 10° = 180°
3x + 30° = 180°
⇒ 3x= 180° – 30°
3x = 150°
x = \(\frac { { 150 }^{ \circ } }{ 3 }\)  = 50°
Similarly, ∠B + ∠C = 180°
⇒ y + 92° = 180°
⇒ y = 180° – 92° = 88°
∴ x = 50°, y = 88°

Question 13.
In the figure, ABCD and AEFG are two parallelograms. If ∠C = 58°, find ∠F.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q13.1
Solution:
In the figure, ABCD and AEFG are two parallelograms ∠C = 58°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q13.2
∵ DC || GF and CB || FE (Sides of ||gms)
∴ ∠C = ∠F
But ∠C = 58°
∴ ∠F = 58°

Question 14.
Complete each of the following statements by means of one of those given in brackets against each:
(i) If one pair of opposite sides are equal and parallel, then the figure is ……… (parallelogram, rectangle, trapezium)
(ii) If in a quadrilateral only one pair of opposite sides are parallel, the quadrilateral is …….. (square, rectangle, trapezium)
(iii) A line drawn from the mid-point of one side of a triangle ………. another side intersects the third side at its mid-point, (perpendicular to, parallel to, to meet)
(iv) If one angle of a parallelogram is a right angle, then it is necessarily a …….. (rectangle, square, rhombus)
(v) Consecutive angle of a parallelogram are ……… (supplementary, complementary)
(vi) If both pairs of opposite sides of a quadrilateral are equal, then it is necessarily a ……… (rectangle, parallelogram, rhombus)
(vii) If opposite angles of a quadrilateral are equal, then it is necessarily a ………. (parallelogram, rhombus, rectangle)
(viii)If consecutive sides of a parallelogram are equal, then it is necessarily a …….. (kite, rhombus, square)
Solution:
(i) If one pair of opposite sides are equal and parallel, then the figure is parallelogram.
(ii) If in a quadrilateral only one pair of opposite sides are parallel, the quadrilateral is trapezium.
(iii) A line drawn from the mid-point of one side of a triangle parallel to another side intersects the third side at its mid-point,
(iv) If one angle of a parallelogram is a right angle, then it is necessarily a rectangle.
(v) Consecutive angle of a parallelogram are supplementary.
(vi) If both pairs of opposite sides of a quadrilateral are equal, then it is necessarily a parallelogram.
(vii) If opposite angles of a quadrilateral are equal, then it is necessarily a parallelogram.
(viii) If consecutive sides of a parallelogram are equal, then it is necessarily a rhombus.

Question 15.
In a quadrilateral ABCD, bisectors of A and B intersect at O such that ∠AOB = 75°, then write the value of ∠C + ∠D.
Solution:
In quadrilateral ABCD,
Bisectors of ∠A and ∠B meet at O and ∠AOB = 75°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q15.1
In AOB, ∠AOB = 75°
∴ ∠OAB + ∠OBA = 180° – 75° = 105°
But OA and OB are the bisectors of ∠A and ∠B.
∴ ∠A + ∠B = 2 x 105° = 210°
But ∠A + ∠B + ∠C + ∠D = 360° (Sum of angles of a quad.)
∴ 210° + ∠C + ∠D = 360°
⇒ ∠C + ∠D = 360° – 210° = 150°
Hence ∠C + ∠D = 150°

Question 16.
The diagonals of a rectangle ABCD meet at O. If ∠BOC = 44° find ∠OAD.
Solution:
In rectangle ABCD,
Diagonals AC and BD intersect each other at O and ∠BOC = 44°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q16.1
But ∠AOD = ∠BOC (Vertically opposite angles)
∴ ∠AOD = 44°
In ∆AOD,
∠AOD + ∠OAD + ∠ODA = 180° (Sum of angles of a triangle)
⇒ 44° + ∠OAD + ∠OAD = 180° [∵ OA = OD, ∠OAD = ∠ODA]
⇒ 2∠OAD = 180° – 44° = 136°
∴ ∠OAD = \(\frac { { 136 }^{ \circ } }{ 2 }\)  = 68°

Question 17.
If ABCD is a rectangle with ∠BAC = 32°, find the measure if ∠DBC.
Solution:
In rectangle ABCD,
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q17.1
Diagonals bisect each other at O
∠BAC = 32°
∵ OA = OB
∴ ∠OBA Or ∠DBA = ∠BAC = 32°
But ∠ABC = 90° (Angle of a rectangles)
∴ ∠DBC = ∠ABC – ∠DBA
= 90° – 32° = 58°

Question 18.
If the bisectors of two adjacent angles A and B of a quadrilateral ABCD intersect at a point O. Such that ∠C + ∠D = k(∠AOB), then find the value of k.
Solution:
In quadrilateral ABCD,
Bisectors of ∠A and ∠B meet at O
Such that ∠C + ∠D = k (∠AOB)
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q18.1
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q18.2

Question 19.
In the figure, PQRS is a rhombus in which the diagonal PR is produced to T. If ∠SRT = 152°, find x, y and z.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q19.1
Solution:
In rhombus PQRS,
Diagonal PR and SQ bisect each other at right angles and PR is produced to T such that ∠SRT = 152°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q19.2
But ∠SRT + ∠SRP = 180° (Linear pair)
⇒ 152° +∠SRP = 180°
⇒ ∠SRP =180°- 152° = 28°
But ∠SPR = ∠SRP (∵ PR bisects ∠P and ∠R)
⇒ z = 28°
y = 90° (∵ Diagonals bisect each other at right angles)
∠RPQ = z = 28°
∴ In ∆POQ,
z + x = 90° ⇒ 28° + x = 90°
⇒ x = 90° – 28° = 62°
∴ x = 62°, y = 90°, z = 28°

Question 20.
In the figure, ABCD is a rectangle in which diagonal AC is produced to E. If ∠ECD = 146°, find ∠AOB.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q20.1
Solution:
In rectangle ABCD,
Diagonals AC and BD bisect each other at O
AC is produced to E and ∠DCE = 146°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS Q20.2
∠DCE + ∠DCA = 180° (Linear pair)
⇒ 146°+ ∠DCA= 180°
⇒ ∠DCA = 180°- 146°
⇒ ∠DCA = 34°
∴ ∠CAB = ∠DCA (Alternate angles)
= 34°
Now in ∆AOB,
∠AOB = 180° – (∠DAB + ∠OBA)
= 180° – (34° + 34°)
= 1803 – 68° = 112°

Hope given RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4

RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4

Other Exercises

Question 1.
In a ∆ABC, D, E and F are respectively, the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7cm, 8cm and 9cm, respectively, find the perimeter of ∆DEF.
Solution:
In ∆ABC, D, E and F are the mid-points of sides,
BC, CA, AB respectively
AB = 7cm, BC = 8cm and CA = 9cm
∵ D and E are the mid points of BC and CA
∴ DE || AB and DE =\(\frac { 1 }{ 2 }\) AB =\(\frac { 1 }{ 2 }\) x 7 = 3.5cm
Similarly,
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q1.1

Question 2.
In a triangle ∠ABC, ∠A = 50°, ∠B = 60° and ∠C = 70°. Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.
Solution:
In ∆ABC,
∠A = 50°, ∠B = 60° and ∠C = 70°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q2.1
D, E and F are the mid points of sides BC, CA and AB respectively
DE, EF and ED are joined
∵ D, E and F are the mid points of sides BC, CA and AB respectively
∴ EF || BC
DE || AB and FD || AC
∴ BDEF and CDEF are parallelogram
∴ ∠B = ∠E = 60° and ∠C = ∠F = 70°
Then ∠A = ∠D = 50°
Hence ∠D = 50°, ∠E = 60° and ∠F = 70°

Question 3.
In a triangle, P, Q and R are the mid-points of sides BC, CA and AB respectively. If AC = 21 cm, BC = 29cm and AB = 30cm, find the perimeter of the quadrilateral ARPQ.
Solution:
P, Q, R are the mid points of sides BC, CA and AB respectively
AC = 21 cm, BC = 29 cm and AB = 30°
∵ P, Q, R and the mid points of sides BC, CA and AB respectively.
∴ PQ || AB and PQ = \(\frac { 1 }{ 2 }\) AB
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q3.1
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q3.2

Question 4.
In a ∆ABC median AD is produced to X such that AD = DX. Prove that ABXC is a parallelogram.
Solution:
Given : In ∆ABC, AD is median and AD is produced to X such that DX = AD
To prove : ABXC is a parallelogram
Construction : Join BX and CX
Proof : In ∆ABD and ∆CDX
AD = DX (Given)
BD = DC (D is mid points)
∠ADB = ∠CDX (Vertically opposite angles)
∴ ∆ABD ≅ ∆CDX (SAS criterian)
∴ AB = CX (c.p.c.t.)
and ∠ABD = ∠DCX
But these are alternate angles
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q4.1
∴ AB || CX and AB = CX
∴ ABXC is a parallelogram.

Question 5.
In a ∆ABC, E and F are the mid-points of AC and AB respectively. The altitude AP to BC intersects FE at Q. Prove that AQ = QP.
Solution:
Given : In ∆ABC, E and F are the mid-points of AC and AB respectively.
EF are joined.
AP ⊥ BC is drawn which intersects EF at Q and meets BC at P.
To prove: AQ = QP
proof : In ∆ABC
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q5.1
E and F are the mid points of AC and AB
∴ EF || BC and EF = \(\frac { 1 }{ 2 }\)BC
∴ ∠F = ∠B
In ∆ABP,
F is mid point of AB and Q is the mid point of FE or FQ || BC
∴ Q is mid point of AP,
∴ AQ = QP

Question 6.
In a ∆ABC, BM and CN are perpendiculars from B and C respectively on any line passing through A. If L is the mid-point of BC, prove that ML NL.
Solution:
In ∆ABC,
BM and CN are perpendicular on a line drawn from A. L is the mid point of BC. ML and NL are joined.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q6.1
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q6.2
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q6.3

Question 7.
In the figure triangle ABC is right-angled at B. Given that AB = 9cm. AC = 15cm and D, E are the mid points of the sides AB and AC respectively, calculate.
(i) The length of BC
(ii) The area of ∆ADC
Solution:
In ∆ABC, ∠B = 90°
AC =15 cm, AB = 9cm
D and E are the mid points of sides AB and AC respectively and D, E are joined.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q7.1
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q7.2

Question 8.
In the figure, M, N and P are the mid points of AB, AC and BC respectively. If MN = 3 cm, NP = 3.5cm and MP = 2.5cm, calculate BC, AB and AC.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q8.1
Solution:
In ∆ABC,
M, N and P are the mid points of side, AB, AC and BC respectively.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q8.2
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q8.3

Question 9.
In the figure, AB = AC and CP || BA and AP is the bisector of exterior ∠CAD of ∆ABC. Prove that (i) ∠PAC = ∠BCA (ii) ABCP is a parallelogram.
Solution:
Given : In ABC, AB = AC
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q9.1
nd CP || BA, AP is the bisector of exterior ∠CAD of ∆ABC
To prove :
(i) ∠PAC = ∠BCA
(ii) ABCP is a ||gm
Proof : (i) In ∆ABC,
∵ AB =AC
∴ ∠C = ∠B (Angles opposite to equal sides) and ext.
∠CAD = ∠B + ∠C
= ∠C + ∠C = 2∠C ….(i)
∵ AP is the bisector of ∠CAD
∴ 2∠PAC = ∠CAD …(ii)
From (i) and (ii)
∠C = 2∠PAC
∠C = ∠CAD or ∠BCA = ∠PAC
Hence ∠PAC = ∠BCA
(ii) But there are alternate angles,
∴ AD || BC
But BA || CP
∴ ABCP is a ||gm.

Question 10.
ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the mid-points of the sides, in order, is a rectangle.
Solution:
Given : In fne figure, ABCD is a kite in which AB = AD and BC = CD.
P, Q, R and S are the mid points of the sides AB, BC, CD and DA respectively.
To prove : PQRS is a rectangle.
Construction : Join AC and BD.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q10.1
Proof: In ∆ABD,
P and S are mid points of AB and AD
∴ PS || BD and PS = \(\frac { 1 }{ 2 }\) BD …(i)
Similarly in ∆BCD,
Q and R the mid points of BC and CD
∴ QR || BD and
QR = \(\frac { 1 }{ 2 }\) BD …(ii)
∴ Similarly, we can prove that PQ || SR and PQ = SR …(iii)
From (i) and (ii) and (iii)
PQRS is a parallelogram,
∵ AC and BD intersect each other at right angles.
∴ PQRS is a rectangle.

Question 11.
Let ABC be an isosceles triangle in which AB = AC. If D, E, F be the mid-points of the sides BC, CA and AB respectively, show that the segment AD and EF bisect each other at right angles.
Solution:
In ∆ABC, AB = AC
D, E and F are the mid points of the sides BC, CA and AB respectively,
AD and EF are joined intersecting at O
To prove : AD and EF bisect each other at right angles.
Construction : Join DE and DF.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q11.1
Proof : ∵ D, E and F are the mid-points of
the sides BC, CA and AB respectively
∴ AFDE is a ||gm
∴ AF = DE and AE = DF
But AF = AE
(∵ E and F are mid-points of equal sides AB and AC)
∴ AF = DF = DE = AE
∴AFDE is a rhombus
∵ The diagonals of a rhombus bisect each other at right angle.
∴ AO = OD and EO = OF
Hence, AD and EF bisect each other at right angles.

Question 12.
Show that the line segments joining the mid points of the opposite sides of a quadrilateral bisect each other.
Solution:
Given : In quad. ABCD,
P, Q, R and S are the mid points of sides AB, BC, CD and DA respectively.
PR and QS to intersect each other at O
To prove : PO = OR and QO = OS
Construction: Join PQ, QR, RS and SP and also join AC.
Proof: In ∆ABC
P and Q are mid-points of AB and BC
∴ PQ || AC and PQ = \(\frac { 1 }{ 2 }\) AC …(i)
Similarly is ∆ADC,
S and R are the mid-points of AD and CD
∴ SR || AC and SR = \(\frac { 1 }{ 2 }\) AC ..(ii)
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q12.1
from (i) and (ii)
PQ = SQ and PQ || SR
PQRS is a ||gm (∵ opposite sides are equal area parallel)
But the diagonals of a ||gm bisect each other.
∴ PR and QS bisect each other.

Question 13.
Fill in the blanks to make the following statements correct :
(i) The triangle formed by joining the mid-points of the sides of an isosceles triangle is …
(ii) The triangle formed by joining the mid-points of the sides of a right triangle is …
(iii) The figure formed by joining the mid-points of consecutive sides of a quadrilateral is …
Solution:
(i) The triangle formed by joining the mid-points of the sides of an isosceles triangle is an isosceles triangle.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q13.1
(ii) The triangle formed by joining the mid-points of the sides of a right triangle is right triangle.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q13.2
(iii) The figure formed by joining the mid-points of consecutive sides of a quadrilateral is a parallelogram.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q13.3

Question 14.
ABC is a triangle and through A, B, C lines are drawn parallel to BC, CA and AB respectively intersecting at P, Q and R. Prove that the perimeter of ∆PQR is double the perimeter of ∆ABC.
Solution:
Given : In ∆ABC,
Through A, B and C, lines are drawn parallel to BC, CA and AB respectively meeting at P, Q and R.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q14.1
To prove : Perimeter of ∆PQR = 2 x perimeter of ∆ABC
Proof : ∵ PQ || BC and QR || AB
∴ ABCQ is a ||gm
∴ BC = AQ
Similarly, BCAP is a ||gm
∴ BC = AP …(i)
∴ AQ = AP = BL
⇒ PQ = 2BC
Similarly, we can prove that
QR = 2AB and PR = 2AC
Now perimeter of ∆PQR.
= PQ + QR + PR = 2AB + 2BC + 2AC
= 2(AB + BC + AC)
= 2 perimeter of ∆ABC.
Hence proved

Question 15.
In the figure, BE ⊥ AC. AD is any line from A to BC intersecting BE in H. P, Q and R are respectively the mid-points of AH, AB and BC. Prove that PQR = 90°.
Solution:
Given: In ∆ABC, BE ⊥ AC
AD is any line from A to BC meeting BC in D and intersecting BE in H. P, Q and R are respectively mid points of AH, AB and BC. PQ and QR are joined B.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q15.1
To prove : ∠PQR = 90°
Proof: In ∆ABC,
Q and R the mid points of AB and BC 1
∴ QR || AC and QR = \(\frac { 1 }{ 2 }\) AC
Similarly, in ∆ABH,
Q and P are the mid points of AB and AH
∴ QP || BH or QP || BE
But AC ⊥ BE
∴ QP ⊥ QR
∴ ∠PQR = 90°

Question 16.
ABC is a triangle. D is a point on AB such that AD = \(\frac { 1 }{ 4 }\) AB and E is a point on AC such that AE = \(\frac { 1 }{ 4 }\) AC. Prove that DE = \(\frac { 1 }{ 4 }\) BC.
Solution:
Given : In ∆ABC,
D is a point on AB such that
AD = \(\frac { 1 }{ 4 }\) AB and E is a point on AC such 1
that AE = \(\frac { 1 }{ 4 }\) AC
DE is joined.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q16.1
To prove : DE = \(\frac { 1 }{ 4 }\) BC
Construction : Take P and Q the mid points of AB and AC and join them
Proof: In ∆ABC,
∵ P and Q are the mid-points of AB and AC
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q16.2

Question 17.
In the figure, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = \(\frac { 1 }{ 4 }\) AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q17.1
Solution:
Given : In ||gm ABCD,
P is the mid-point of DC and Q is a point on AC such that CQ = \(\frac { 1 }{ 4 }\) AC. PQ is produced meets BC at R.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q17.2
To prove : R is mid point of BC
Construction : Join BD
Proof : ∵ In ||gm ABCD,
∵ Diagonal AC and BD bisect each other at O
∴ AO = OC = \(\frac { 1 }{ 2 }\) AC …(i)
In ∆OCD,
P and Q the mid-points of CD and CO
∴ PQ || OD and PQ = \(\frac { 1 }{ 2 }\) OD
In ∆BCD,
P is mid-poiht of DC and PQ || OD (Proved above)
Or PR || BD
∴ R is mid-point BC.

Question 18.
In the figure, ABCD and PQRC are rectangles and Q is the mid-point of AC.
Prove that (i) DP = PC (ii) PR = \(\frac { 1 }{ 2 }\) AC.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q18.1
Solution:
Given : ABCD are PQRC are rectangles and Q is the mid-point of AC.
To prove : (i) DP = PC (ii) PR = \(\frac { 1 }{ 2 }\) AC
Construction : Join diagonal AC which passes through Q and join PR.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q18.2
Proof : (i) In ∆ACD,
Q is mid-point of AC and QP || AD (Sides of rectangles)
∴ P is mid-point of CD
∴ DP = PC
(ii) ∵PR and QC are the diagonals of rectangle PQRC
∴ PR = QC
But Q is the mid-point of AC
∴ QC = \(\frac { 1 }{ 2 }\) AC
Hence PR = \(\frac { 1 }{ 2 }\) AC

Question 19.
ABCD is a parallelogram, E and F are the mid points AB and CD respectively. GFI is any line intersecting AD, EF and BC at Q P and H respectively. Prove that GP = PH.
Solution:
Given : In ||gm ABCD,
E and F are mid-points of AB and CD
GH is any line intersecting AD, EF and BC at GP and H respectively
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q19.1
To prove : GP = PH
Proof: ∵ E and F are the mid-points of AB and CD
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q19.2
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q19.3

Question 20.
BM and CN are perpendiculars to a line passing, through the vertex A of a triangle ABC. If L is the mid-point of BC, prove that LM = LN.
Solution:
In ∆ABC,
BM and CN are perpendicular on a line drawn from A.
L is the mid point of BC.
ML and NL are joined.
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q20.1
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 Q20.2

Hope given RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3

RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3

Other Exercises

Question 1.
In a parallelogram ABCD, determine the sum of angles ZC and ZD.
Solution:
In a ||gm ABCD,
∠C + ∠D = 180°
(Sum of consecutive angles)
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q1.1

Question 2.
In a parallelogram ABCD, if ∠B = 135°, determine the measures of its other angles.
Solution:
In a ||gm ABCD, ∠B = 135°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q2.1
∴ ∠D = ∠B = 135° (Opposite angles of a ||gm)
But ∠A + ∠B = 180° (Sum of consecutive angles)
⇒ ∠B + 135° = 180°
∴ ∠A = 180° – 135° = 45°
But∠C = ∠B = 45° (Opposite angles of a ||gm)
∴ Angles are 45°, 135°, 45°, 135°.

Question 3.
ABCD is a square, AC and BD intersect at O. State the measure of ∠AOB.
Solution:
In a square ABCD,
Diagonal AC and BD intersect each other at O
∵ Diagonals of a square bisect each other at right angle
∵∠AOB = 90°
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q3.1

Question 4.
ABCD is a rectangle with ∠ABD = 40°. Determine ∠DBC.
Solution:
In rectangle ABCD,
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q4.1
∠B = 90°, BD is its diagonal
But ∠ABD = 40°
and ∠ABD + ∠DBC = 90°
⇒ 40° + ∠DBC = 90°
⇒ ∠DBC = 90° – 40° = 50°
Hence ∠DBC = 50°

Question 5.
The sides AB and CD of a parallelogram ABCD are bisected at E and F. Prove that EBFD is a parallelogram.
Solution:
Given : In ||gm ABCD, E and F are the mid points of the side AB and CD respectively
DE and BF are joined
To prove : EBFD is a ||gm
Construction : Join EF
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q5.1
Proof : ∵ ABCD is a ||gm
∴ AB = CD and AB || CD
(Opposite sides of a ||gm are equal and parallel)
∴ EB || DF and EB = DF (∵ E and F are mid points of AB and CD)
∴ EBFD is a ||gm.

Question 6.
P and Q are the points of trisection of the diagonal BD of the parallelogram ABCD. Prove that CQ is parallel to AP. Prove also that AC bisects PQ.
Solution:
Given : In ||gm, ABCD. P and Q are the points of trisection of the diagonal BD
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q6.1
To prove : (i) CQ || AP
AC bisects PQ
Proof: ∵ Diagonals of a parallelogram bisect each other
∴ AO = OC and BO = OD
∴ P and Q are point of trisection of BD
∴ BP = PQ = QD …(i)
∵ BO = OD and BP = QD …(ii)
Subtracting, (ii) from (i) we get
OB – BP = OD – QD
⇒ OP = OQ
In quadrilateral APCQ,
OA = OC and OP = OQ (proved)
Diagonals AC and PQ bisect each other at O
∴ APCQ is a parallelogram
Hence AP || CQ.

Question 7.
ABCD is a square. E, F, G and H are points on AB, BC, CD and DA respectively, such that AE = BF = CG = DH. Prove that EFGH is a square.
Solution:
Given : In square ABCD
E, F, G and H are the points on AB, BC, CD and DA respectively such that AE = BF = CG = DH
To prove : EFGH is a square
Proof : E, F, G and H are points on the sides AB, BC, CA and DA respectively such that
AE = BF = CG = DH = x (suppose)
Then BE = CF = DG = AH = y (suppose)
Now in ∆AEH and ∆BFE
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q7.1
AE = BF (given)
∠A = ∠B (each 90°)
AH = BE (proved)
∴ ∆AEH ≅ ∆BFE (SAS criterion)
∴ ∠1 = ∠2 and ∠3 = ∠4 (c.p.c.t.)
But ∠1 + ∠3 = 90° and ∠2 + ∠4 = 90° (∠A = ∠B = 90°)
⇒ ∠1 + ∠2 + ∠3 + ∠4 = 90° + 90° = 180°
⇒ ∠1 + ∠4 + ∠1 + ∠4 = 180°
⇒ 2(∠1 + ∠4) = 180°
⇒ ∠1 + ∠4 = \(\frac { { 180 }^{ \circ } }{ 2 }\)  = 90°
∴ ∠HEF = 180° – 90° = 90°
Similarly, we can prove that
∠F = ∠G = ∠H = 90°
Since sides of quad. EFGH is are equal and each angle is of 90°
∴ EFGH is a square.

Question 8.
ABCD is a rhombus, EABF is a straight line such that EA = AB = BF. Prove that ED and FC when produced meet at right angles.
Solution:
Given : ABCD is a rhombus, EABF is a straight line such that
EA = AB = BF
ED and FC are joined
Which meet at G on producing
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q8.1
To prove: ∠EGF = 90°
Proof : ∵ Diagonals of a rhombus bisect
each other at right angles
AO = OC, BO = OD
∠AOD = ∠COD = 90°
and ∠AOB = ∠BOC = 90°
In ∆BDE,
A and O are the mid-points of BE and BD respectively.
∴ AO || ED
Similarly, OC || DG
In ∆ CFA, B and O are the mid-points of AF and AC respectively
∴ OB || CF and OD || GC
Now in quad. DOCG
OC || DG and OD || CG
∴ DOCG is a parallelogram.
∴ ∠DGC = ∠DOC (opposite angles of ||gm)
∴ ∠DGC = 90° (∵ ∠DOC = 90°)
Hence proved.

Question 9.
ABCD is a parallelogram, AD is produced to E so that DE = DC = AD and EC produced meets AB produced in F. Prove that BF = BC.
Solution:
Given : In ||gm ABCD,
AB is produced to E so that
DE = DA and EC produced meets AB produced in F.
To prove : BF = BC
Proof: In ∆ACE,
RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 Q9.1
O and D are the mid points of sides AC and AE
∴ DO || EC and DB || FC
⇒ BD || EF
∴ AB = BF
But AB = DC (Opposite sides of ||gm)
∴ DC = BF
Now in ∆EDC and ∆CBF,
DC = BF (proved)
∠EDC = ∠CBF
(∵∠EDC = ∠DAB corresponding angles)
∠DAB = ∠CBF (corresponding angles)
∠ECD = ∠CFB (corresponding angles)
∴ AEDC ≅ ACBF (ASA criterion)
∴ DE = BC (c.p.c.t.)
⇒ DC = BC
⇒ AB = BC
⇒ BF = BC (∵AB = BF proved)
Hence proved.

Hope given RD Sharma Class 9 Solutions Chapter 13 Linear Equations in Two Variables Ex 13.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Value Based Questions in Science for Class 9 Chapter 7 Diversity in Living Organisms

Value Based Questions in Science for Class 9 Chapter 7 Diversity in Living Organisms

These Solutions are part of Value Based Questions in Science for Class 9. Here we have given Value Based Questions in Science for Class 9 Chapter 7 Diversity in Living Organisms

Question 1.
“Raman lives in a coastal village. He is son of a fisherman. Whenever any unwanted animal comes in the net, instead of killing it, he puts back the same in the sea.” Answer the following questions based on above information

  1. What would have happened, had he killed those animals ?
  2. Give one reason to justify that Raman’s action is environment friendly.
  3. How can you contribute in the preservation of flora and fauna around you ? Mention any two steps.
    (Sample Paper 2012—13)

Answer:

  1. Killing of unwanted animals would have contributed to disturbing ecological balance.
  2. Raman is helping in conserving biodiversity.
    1. Spreading awareness about importance of biodiversity amongst classmates, family members and community members.
    2. Nonuse of products derived from wild animals.
    3. By becoming member of PETA (People for Ethical Treatment of Animals) and developing empathy and love for all living organisms.

More Resources

Question 2.
Seeing a bat flying over the roof of her house, Saira asked her papa

  1. What is this night flying bird ?
  2. How does it see during night ?
  3. What does it eat and how does it obtain the same ? What would be reply of her papa ?

Answer:

  1. Bat is not a bird. It is a mammal that has patagia in the fore limbs to function as wings and help in flight.
  2. Bat does not require sharp vision for its flight. It flies through écholocation or sending echo waves that are interpreted to know the obstacles. Bat, therefore, “sees through its ears.”
  3. Bat feeds on small flying insects. The insects are located through sound waves produced by them. Feeding on insects functions as biocontrol method on the population of night flying insects. It is rule of nature and keeps ecological balance.

Question 3.
On a rainy day, Raghav found small brownish worm like animals crawling slowly over the ground of his school. On close examination he found that the animal has faintly segmented body.

  1. What is the possible identity of the animal ?
  2. Why is it seen only in the rainy season ?
  3. What is its ecological importance ?

Answer:

  1. The identity of the crawling animal is earthworm.
  2. It lives in burrows inside the soil. In rainy season, the burrows get filled up with rain water. So the earthworms come out of them.
  3. Earthworm feeds on decaying fallen leaves and other organic remains. It pulverises the same. The worm castings are good source of soil nutrients. Earthworm is called farmer’s friend as it ploughs the soil by its burrowing habit and converts organic remains into manure.

Question 4.
While on a visit to hill station, Shaurya found extensive mat-like growth of very small erect green leafy plants over the wet rocks. The plants possess knobbed stalks over their tips.

  1. What are the plants seen by Shaurya ?
  2. What is the name of knobbed stalks.
  3. What is the reason of abundant growth of the plants.
  4. Write down about the impact of the plants on the rocks.

Answer:

  1. Shaurya saw moss plants growing on wet rocks.
  2. The knobbed stalks present over tips of moss plants are sporophytes. The knobbed structures are capsules that bear spores.
  3. Moss plant has a high reproductive potential through spores and fragmentation of filamentous protenema that develops from them.
  4. By their extensive growth moss plants trap soil particles, corrode rock surface and develop cracks in them. This builds up soil that results in growth of first herbaceous plants and then larger plants like shrubs and trees. The phenomenon is called ecological succession.

Hope given Value Based Questions in Science for Class 9 Chapter 7 Diversity in Living Organisms are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.