NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1

NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 9
Chapter NameQuadrilaterals
ExerciseEx 9.1
Number of Questions Solved12
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1

Question 1.
The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral.
Solution:
Given: the ratio of the angles of quadrilateral are 3 : 5 : 9 : 13.
Let the angles of the quadrilateral are 3x, 5x, 9x and 13x.
We know that, sum of angles of a quadrilateral = 360°
∴ 3x + 5x+ 9x+13x = 360°
⇒ 30x = 360° ⇒ x = \(\frac { { 360 }^{ \circ } }{ 30 }\) = 12°
∴ Angles of the quadrilateral are 3x = 3 x 12 = 36°
5x = 5 x 12 = 60°
9x= 9×12 = 108°
and 13x = 13×12 = 156°

Question 2.
If the diagonals of a parallelogram are equal, then show that it is a rectangle.
Solution:
Let given parallelogram is ABCD whose diagonals AC and BD are equal, i.e., AC = BD.
Now, we have to prove that ABCD is a rectangle.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 1
Proof: In ∆ ABC and ∆ DCB, we have
AB = CD (Opposite sides of parallelogram)
BC = CB (Common in both triangles)
and AC = BD (Given)
∴ ∆ABC ≅ ∆DCB (By SSS rule)
∴ ∆ABC = ∠DCB …(i)
(Corresponding Part of Congruent Triangle)
But DC || AB and transversal CB intersect them.
∴ ∠ABC+ ∠DCB = 180°
(∵ Both are interior angles on the same side of the transversal)
⇒ ∠ABC + ∠ABC = 180° [From Eq. (i)]
⇒ 2 ∠ ABC = 180°
⇒ ∠ABC = 90°= ∠DCB
Thus, ABCD is a parallelogram and one of angles is 90°.
Hence, ABCD is a rectangle.
Hence proved.

Question 3.
Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
Solution:
Given: a quadrilateral ABCD whose diagonals AC and BD bisect each other at right angles.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 2
i.e, OA = OC and OB = OD
and ∠AOD = ∠AOB = ∠COD = ∠BOC = 90°
To prove: ABCD is a rhombus.
Proof: In ∆OAB and ∆ODC, we have
OA = OC and OB = OD (Given)
∠AOB = ∠COD (Vertically opposite angles)
∴ ∆OAB ≅ ∆OCD (By SAS rule)
∴ AB = CD ,..(i)
(Corresponding part of congruent triangles)
Again, in ∆OAD and ∆OBC, we have
OA = OC and OD = OB (Given)
and ∠AOD = ∠BOC (Vertically opposite angle)
∴ A OAD = A OCB (By SAS rule)
∴ AD = BC …(ii) (Corresponding part of congruent triangles)
Similarly, we can prove that
AB = AD
CD = BC …(iii)
Hence, from Eqs. (i), (ii) and (iii), we get
AB = BC = AD = CD
Hence, ABCD is a rhombus.
Hence proved.

Question 4.
Show that the diagonals of a square are equal and bisect each other at right angles.
Solution:
Given: A square ABCD whose diagonals AC and BD intersect at O.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 3
i. e, . AC = BD, OD = OB, OA = OC and AC ⊥ BD
Proof: In A ABC and A BAD, we have
AB = BA (Common)
BC= AD (Sides of a square)
∠ABC = ∠BAD = 90°
∴ ∆ABC ≅ ∆BAD (By SAS rule)
AC = BD
(Corresponding Parts of Congruent Triangle)
∴ ∆OAB and ∆OCD
AB = DC (Sides of a square)
∠ OAB = ∠DCO
(∵ AB || CD and transversal AC intersect)
and ∠ OBA = ∠BDC
(∵AB|| CD and transversal BD intersect)
∴ ∆OAB ≅ ∆OCD
OA = OC and OB = OD
(Corresponding Parts of Congruent Triangle)
Now, in ∆AOB and ∆AOD, we have
OB = OD (Prove in above)
AB = AD (Sides of a square)
AO = OA (Common)
∴ ∆ AOB = ∆AOD (By SSS)
∴ ∠AOB = ∠AOD (By CPCT)
But ∠AOB + ∠AOD-180° (Linear pair)
∴ ∠AOB = ∠AOD = 90°
Thus, AO ⊥ BDi.e.,AC ⊥ BD.
Hence, AC = BD, OA = OC, OB = OD and AC ⊥ BD
Hence proved.

Question 5.
Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
Solution:
Given: A quadrilateral ABCD in which AC = BD and AC ⊥ BD such that OA = OC and OB = OD. So, ABCD is a parallelogram.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 4
To prove: ABCD is a square.
Proof: Let AC and BD intersect at a point O.
In ∆ABO and ∆ADO, we have
BO = OD (Given)
AO = OA (Common)
∠AOB = ∠AOD = 90° (Given)
∴ ∆ABO ≅ ∆ADO (By SAS)
∴ AB = AD (By CPCT)
and AD = BC (Opposite sides of parallelogram)
∴ AB = BC = DC = AD …(i)
Again, in ∆ABC and ∆BAD, we have
AB = BA (Common)
AC = BD (Given)
BC= AD [From Eq. (i)]
∴ ∆ABC = ∆BAD (By SSS)
∠ABC= ∠ BAD
∠ABC+ ∠ BAD =180° …(ii)
But
∠ABC = ∠ BAD = 180° (Sum of interior angles of a parallelogram)
∴ ∠ABC = ∠BAD = 90° [From Eq. (ii)]
Thus, AB = BC = CD = DA and ∠A = 90°
∴ ABCD is a square.
Hence proved.

Question 6.
Diagonal AC of a parallelogram ABCD bisects ∠A (see figure). Show that
(i) it bisects ∠C also,
(ii) ABCD is a rhombus.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 5
Solution:
Given: diagonal AC of a parallelogram ABCD bisects ∠A
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 6
i.e., ∠DCA = ∠ BAC = \(\frac { 1 }{ 2 }\) ∠BAD ….(i)
Here, AB || CD and AC is transversal.
∴ ∠DCA = ∠CAB (Pair of alternate angle)…(ii)
and ∠BCA = ∠ DAC (Pair of alternate angle).. .(iii)
From Eqs. (i), (ii) and (iii), we get
∠DAC = BCA = ∠ BAC = ∠DCA
Now, ∠BCD = ∠BCA + ∠DCA
= ∠DAC + ∠CAB
= ∠BAD
∴ Diagonal AC also bisects ∠C.
Again, in ∆OAD and ∆ OCD, we have
OA = OC (∵ Diagonals bisect each other)
OD = OD (Common)
∴ ∠AOD = ∠ COD = 90°
∴ ∆ OAD ≅ ∆ OCD (By SAS)
∴ AD = CD (By CPCT)
Now AB = CD and AD = BC (Opposite sides of parallelogram)
∴ AB = CD = AD = BC
Hence, ABCD is a rhombus.
Hence proved.

Question 7.
ABCD is a rhombus. Show that diagonal AC bisects ∠Aas well as ∠C and diagonal BD bisects ∠B as well AS ∠D.
Solution:
Given: ABCD is a rhombus
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 7
∴ AD = AB = BC = CD ….(i)
To prove:
(i) Diagonal AC bisect ∠A as well as ∠C.
(ii) Diagonal BD bisects ∠B as well as ∠D.
Proof:
(i) Let AC and BD are the diagonals of rhombus ABCD.
In ∆ABC and ∆ADC,
AD = AB
CD = BC [From Eq,(i)]
and AC = CA (Common)
∴ ∆ABC ≅ ∆ADC ( By SSS rule)
∴ ∠DAC = ∠BAC (By CPCT)
and ∠DCA = ∠ BCA
Also, ∠DAC = ∠DCA
and ∠BAC = ∠ BCA
This shows that AC bisect ∠ A as well as ∠C.
(ii) Again, in ∆BDCand ∆BDA,
AB = BC
AD = CD
BD = BD (Common)
∴ ∆ BDC ≅ ∆ BDA (SSS rule)
∴ ∠BDA = ∠BDC
and ∠DBA = ∠DBC
Also, ∠BDA = ∠DBA
and ∠BDC = ∠DBC
This shows that BD bisect ∠B as well as ∠D.

Question 8.
ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that
(i) ABCD is a square
(ii) diagonal BD bisects ∠ B as well as ∠D.
Solution:
Given: ABCD is a rectangle.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 8
∴ AB = CD and BC= AD …(i)
To Prove (i) ABCD is a square.
i.e., AB = BC = CD = DA
(ii) Dioagonal BDbisects ∠B as well as ∠D.
Proof (i) In ∆ADC and ∆ABC, we have
Since, AB || DC and AC transversal intersect
∠DAC = ∠BAC
∠DCA = ∠BCA
and AC = CA (Common)
∴ ∆ADC ≅ ∆ ABC (By ASA rule)
AD = AB (By CPCT)
and CD = BC …(ii)
Hence, from Eqs. (i) and (ii), we get
AB = BC- AD = CD
∴ ABCD is a square.
(ii) In ∆AOB and ∆COB, we have
AB = BC (Side od square)
BO = OB (Common)
OA = OC
(∵ Diagonal of square bisect each other)
∴ ∆AOB ≅ ∆COB
∴ ∠OBA = ∠OBC
This shows that BO or BD bisect ∠B.
Similarly, in ∆ AOD and ∆ COD, we have
AD = CD (Side od square)
OD = DO (Common)
and OA = OC
(∵ Diagonal of square bisect each other)
∴ ∆ AOD ≅ ∆ COD (By ASA rule)
∴ ∠ADO = ∠CDO
This shows that DO or DB bisect ∠D.
Hence proved.

Question 9.
In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see figure). Show that
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 9
Solution:
Given: ABCD is a parallelogram and P and Q are lie on BD such that
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 10
DP = PQ ….(i)
(i) We have to show,
∆APD ≅ ∆CQB
Now, in ∆APD and ∆CQB, we have
DP = BQ (Given)
AD = BC
(Opposite sides are equal in parallelogram)
∵ AD || BC and BD is a transversal.
∴ ∠ADP = ∠QBC (Alternate interior angle)
∴ ∆APD ≅ ∆CQB (By SAS)
(ii) Since, ∆APD ≅ ∆CQB
∴ AP = CQ
(iii) Here, we have to show, ∆AQB ≅ ∆CPD
Now, in ∆AQB and ∆CPD, we have
BQ = DP (Given)
AB = CD (Opposite sides of parallelogram)
∵ AB || CD and BD is a transversal.
∴ ∠ABQ = ∠CDP (Alternate interior angle)
∴ ∆AQB s ∆ CPD
(iv) Since, ∆AQB ≅ ∆CPD
∴ AQ = CP
(v) Now, in ∆APQ and ∆PCQ, we have
AQ = CP [From part (iv)]
AP = CQ [From part (ii)]
PQ = QP (Common)
∴ ∆APQ = ∆PCQ (By SSS)
∴ ∠APQ = ∠PQC
and ∠AQP = ∠CPQ (Vertically opposite)
Now, these equal angles form a pair of alternate angle when line segment AP and QC are intersected by a transversal PQ.
∴ AP || CQ and AQ || CP
Now, both pairs of opposite sides of quadrilateral APCQ are parallel.
Hence, APCQ is a parallelogram.
Hence proved.

Question 10.
ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see figure). Show that
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 11
Solution:
Given: ABCD is a parallelogram and AP and CQ are perpendicular from vertices A and C on diagonal BD.
∵ AB || CD and BD is a transversal.
∴ ∠CDB = ∠DBA …(i)
(i) Now, in ∆ APB and ∆ CQD, we have
CD = AB (Sides of parallelogram)
∠CQD = ∠APB = 90° (Given)
∠CDQ = ∠ABP [From Eq. (i)]
∴ ∆APB ≅ ∆CQD (By ASA rule)
(ii) ∵ ∆APB ≅ ∆CQU (By CPCT)
∴ AP = CQ
Hence proved.

Question 11.
In ∆ABC and ∆DEF, AB = DE, AB || DE, BC – EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F, respectively (see figure).
Show that
(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 12
(iii) AD || CF and AD = CF
(iv) quadrilateral ACFD is a parallelogram
(v) AC = DF
(vi) ∆ABC ≅ ∆DEF
Solution:
Given: in ∆ABC and ∆DEF,
AB = DE, AB || DE
and BC = EF,BC||EF

(i)
Now, in quadrilateral ABED,
AB = DE and AB || DE (Given)
⇒ ABED is a parallelogram.
(∵ A pair of opposite sides is equal and parallel)

(ii)
In quadrilateral BEFC,
BC = EF and BC || EF.
⇒ BEFC is a parallelogram.
(∵ A pair of opposite sides is equal and parallel)

(iii)
Since, ABED is a parallelogram.
∴ AD || BE and AD = BE …(i)
Also, BEFC in a parallelogram.
∴ CF || BE and CF = BE …(ii)
From Eqs. (i) and (ii), we get
AD || CF and AD =CF

(iv)
In quadrilateral ACFD, we have
AD || CF and AD = CF [From part (iii)]
⇒ ACFD is a parallelogram.

(v)
Since, ACFD is a parallelogram.
∴ AC = DF and AC || DF

(vi)
Now, in ∆ABC and ∆DEF,
AB = DE (Given)
BC = EE (Given)
and AC = DF [From part (v)]
∴ ∆ABC ≅ ∆DEF (By SSS rule)

Question 12.
ABCD is a trape∠ium in which AB || CD and AD = BC (see figure). Show that
(i )∠A=∠B
(ii )∠C=∠D
(iii) ∆ABC ≅ ∆BAD
(iv) diagonal AC = diagonal BD
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 13
[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E].
Solution:
Given: ABCD is a trapezium.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 img 14
AB || CD and AD = BC
Now, extend AB and draw a line through C parallel to DA intersecting AB produced at E.
Now, ADCE is a parallelogram.
∴ AD || CE and AD = CE
But AD = BC
∴ AD = BC = CE

(i)
We know that, ∠A + ∠E = 180°
(∵ Interior angles on the same side of the transversal AE)
⇒ ∠E = 180° – ∠A
Since, BC = EC
∴ ∠E = ∠CBE = 180° – ∠A
Also, ∠ ABC =180° – ∠CBE (∵ ABE is straight line)
= 180°- 180°+ ∠A
⇒ ∠B = ∠A …(i)

(ii)
Now ∠A+ ∠D = 180°
(∵ Interior angles on the same side of the transversal AD)
⇒ ∠D=180°-∠A
⇒ ∠D = 180° -∠B [From Eq. (i)]…(ii)
Also, ∠C+ ∠B = 180°
(∵ Interior angles on the same side of the transversal BC)
⇒ ∠C = 180°-∠B …..(iii)
From Eqs. (ii) and (iii), we get
∠C = ∠D

(iii)
Now, in ∆ABC and ∆ BAD, we have
AB = BA (Common)
AD = BC (Given)
∠A=∠B [From Eq. (i)]
∴ ∆ABC ≅ ∆ BAD (By SAS)

(iv)
Since, ∆ABC ≅ ∆BAD
∴ AC = BD
Hence proved.
We hope the NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.1, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.1

NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.1 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.1.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 11
Chapter NameCircles
ExerciseEx 11.1
Number of Questions Solved2
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.1

Question 1.
Fill in the blanks.
(i) The centre of a circle lies in ___ of the circle. (exterior/interior)
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in ____ of the circle, (exterior/interior)
(iii) The longest chord of a circle is a ____ of the circle.
(iv) An arc is a ____ when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and ____ of the circle.
(vi) A circle divides the plane, on which it lies, in ____ parts.
Solution:
(i) The centre of a circle lies in interior of the circle.
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in exterior of the circle.
(iii) The longest chord of a circle is a diameter of the circle.
(iv) An arc is a semi-circle when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and chord of the circle.
(vi) A circle divides the plane, on which it lies, in three parts.

Question 2.
Write True or False. Give reason for your answers.
(i) Line segment joining the centre to any point on the circle is a , radius of the circle.
(ii) A circle has only finite number of equal chords.
(iii) If a circle is divided into three equal arcs, each is a major arc.
(iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
(v) Sector is the region between the chord and its corresponding arc.
(vi) A circle is a plane figure.
Solution:
(i) True. Because all points are equidistant from the centre to the circle.
(ii) False. Because circle has infinitely may equal chords can be drawn.
(iii) False. Because all three arcs are equal, so their is no difference between the major and minor arcs.
(iv) True. By the definition of diameter, that diameter is twice the radius.
(v) False. Because the sector is the region between two radii and an arc.
(vi) True. Because circle is a part of the plane figure.

We hope the NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.1, help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.1, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 10 Areas of Parallelograms and Triangles Ex 10.1

NCERT Solutions for Class 9 Maths Chapter 10 Areas of Parallelograms and Triangles Ex 10.1 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 10 Areas of Parallelograms and Triangles Ex 10.1.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 10
Chapter NameAreas of Parallelograms and Triangles
ExerciseEx 10.1
Number of Questions Solved1
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 10 Areas of Parallelograms and Triangles Ex 10.1

Question 1.
Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels.
NCERT Solutions for Class 9 Maths Chapter 10 Areas of Parallelograms and Triangles Ex 10.1 img 1
Solution:
In Fig. (i), APDC and trape∠ium ABCD Wes on the same base DC and between the same parallel lines AB and DC.
In Fig. (iii), ATRO and parallelogram PQRS lies on the same base RQ and between the same parallel lies RQ and SP.
In Fig. (v), quadrilateral APCD and quadrilateral ABQD lies on the same base AD and between the same parallel lines AD and BQ.

We hope the NCERT Solutions for Class 9 Maths Chapter 10 Areas of Parallelograms and Triangles Ex 10.1 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 10 Areas of Parallelograms and Triangles Ex 10.1, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2

NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 9
Chapter NameQuadrilaterals
ExerciseEx 9.2
Number of Questions Solved7
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2

Question 1.
ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see figure). AC is a diagonal. Show that
(i) SR || AC and SR = \(\frac { 1 }{ 2 }\) AC
(ii) PQ = SR
(iii) PQRS is a parallelogram.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 1
Solution:
Given: P, Q, Ft and S are mid-points of the sides.
∴ AP = PB, BQ = CQ
CR = DR and AS = DS
(i) In ∆ADC, we have
S is mid-point of AD and R is mid-point of the DC.
We know that, the line segment joining the mid-points of two sides of a triangle is parallel to the third side.
∴ SB || AC …(i)
Also , SR = \(\frac { 1 }{ 2 }\) AC …(ii)
(ii) Similarly, in ∆ABC, we have
PQ || AC ….(iii)
and PQ = \(\frac { 1 }{ 2 }\) AC ….(iv)
Now, from Eqs. (i) and (iii), we get
SR = \(\frac { 1 }{ 2 }\) AC …..(v)
(iii) Now, from Eqs. (i) and (iii), we get
PQ || SR
and from Eq. (v), PQ = SR
Since, a pair of opposite sides of a quadrilateral PQRS is equal and parallel.
So, PQRS is a parallelogram.
Hence proved.

Question 2.
ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Show that the quadrilateral PQRS is a rectangle.
Solution:
Given: ABCD is a rhombus and P, Q, R and S are mid-points of AB, BC, CD and DA

NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 2
By mid-point theorem,
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 3
∴ PQRS is a parallelogram.
Now, we know that diagonals of a rhombus bisect each other at right angles.
∴ ∠EOF = 90°
Now, RQ || BD (By mid-point theorem)
⇒ RE || OF
Also, SP|| AC [From Eq. (i)]
⇒ FR || OE
∴ OERF is a parallelogram.
So, ∠ ERF = ∠EOF = 90°
(Opposite angle of a quadrilateral is equal)
Thus, PQRS is a parallelogram with ∠R = 90°
Hence, PQRS is a rectangle.

Question 3.
ABCD is a rectangle and P, Q, R ans S are mid-points of the sides AB, BC, CD and DA, respectively. Show that the quadrilateral PQRS is a rhombus.
Solution:
Given: ABCD is a rectangle.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 4
∴ ∠A = ∠B = ∠C= ∠D = 90°
and AD = BC, AB = CD
Also, given P, Q, R and S are mid-points of AB, BC, CD and DA .respectively.
∴ PQ || BD and PQ = \(\frac { 1 }{ 2 }\) BD
In rectangle ABCD,
AC = BD
∴ PQ = SR …(ii)
Now, in ∆ASP and ∆BQP
AP = BP (Given)
AS = BQ (Given)
∠A = ∠B (Given)
∴ ∆ASP ≅ ∆BQP (By SAS)
∴ SP = PQ (By CPCT)…(ii)
Similarly, in ∆RDS and ∆RCQ,
SD = CQ (Given)
DR = RC (Given)
∠C=∠D (Given)
∴ ∆RDS ≅ ∆RCQ (By SAS)
∴ SR = RQ (By CPCT)…(iii)
From Eqs. (i), (ii) and (iii), it is clear that quadrilateral PQRS is a rhombus.

Question 4.
ABCD is a trapezium in which AB | | DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see figure). Show that F is the mid-point of BC.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 5
Solution:
Given: ABCD is a trapezium in which AB || CD and E is mid-point of AD and EF || AB.
In ∆ABD, we have
EP\\AB
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 6
and E is mid-point of AD.
So, by theorem, if a line drawn through the mid-point of one side of a triangle parallel to another side bisect the third side.
∴ P is mid-point of BD.
Similarly, in ∆ BCD, we have,
PF || CD (Given)
and P is mid-point of BD.
So, by converse of mid-point theorem, F is mid-point of CB.

Question 5.
In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see figure). Show that the line segments AF and EC trisect the diagonal BD.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 7
Solution:
Given: ABCD is a parallelogram and E, F are the mid-points of sides AB and CD respectively.
To prove: Line segments AF and EC trisect the diagonal BD.
Proof: Since, ABCD is a parallelogram.
AB || DC
and AB = DC (Opposite sides of a parallelogram)
⇒ AE || FC and \(\frac { 1 }{ 2 }\) AB = \(\frac { 1 }{ 2 }\) DC
⇒ AF || FC and AF = FC
∴ AECF is a parallelogram.
∴ AF || FC
⇒ EQ || AP and FP || CQ
In ∆ BAP, E is the mid-point of AB and EQ || AP, so Q is the mid-point of BP.
(By converse of mid-point theorem)
∴ BQ = PQ ….(i)
Again, in ∆DQC, F is the mid-point of DC and FP || CQ, so P is the mid-point of DQ. (By converse of mid-point theorem)
∴ QP = DP …(ii)
From Eqs. (i) and (ii), we get
BQ = PQ = PD
Hence, CE and AF trisect the diagonal BD.

Question 6.
Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
Solution:
Let ABCD is a quadrilateral and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively, i.e., AS = SD, AP = BP, BQ = CQ and CR = DR. We have to show that PR and SQ bisect each other i.e., SO = OQ and PO = OR.
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 8
Now, in ∆ADC, S and R are mid-points of AD and CD.
We know that, the line segment joining the mid-points of two sides of a triangle is parallel to the third side. (By mid-point theorem)
∴ SR || AC and SR = \(\frac { 1 }{ 2 }\) AC …(i)
Similarly, in ∆ ABC, P and Q are mid-points of AB and BC.
∴ PQ || AC and PQ = \(\frac { 1 }{ 2 }\) AC (By mid-point theorem)…(ii)
From Eqs. (i) and (ii), we get
PQ || SR
and PQ = SR = \(\frac { 1 }{ 2 }\) AC
∴ Quadrilateral PQRS is a parallelogram whose diagonals are SQ and PR. Also, we know that diagonals of a parallelogram bisect each other. So, SQ and PR bisect each other.

Question 7.
ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
(i) D is the mid-point of AC
(ii) MD ⊥ AC
(iii) CM = MA = \(\frac { 1 }{ 2 }\) AB
Solution:
Given: ABC is a right angled triangle.
∠C = 90°
NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 img 9
and M is the mid-point of AB.
Also, DM || BC
(i) In ∆ ABC, BC || MD and M is mid-point of AB.
∴ D is the mid-point of AC. (By converse of mid-point theorem)
(ii) Since, MD || BC and CD is transversal
∴ ∠ADM = ∠ACB (Corresponding angles)
But ∠ACB = 90°
∴ ∠ADM = 90° ⇒ MD ⊥ AC
(iii) Now, in ∆ ADM and ∆ CDM, we have
DM = MD (Common)
AD = CD (∵ D is mid point of AC)
∴ ∠ADM = ∠MDC (Each equal to 90°)
∴ ∆ ADM = ∆ CDM (By SAS)
∴ CM = AM (By CPCT)…(i)
Also, M is mid-point of AB.
∴ AM – BM = \(\frac { 1 }{ 2 }\) AB ….(ii)
From Eqs. (i) and (ii), we get
CM = AM = \(\frac { 1 }{ 2 }\) AB
Hence proved.
We hope the NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 9 Quadrilaterals Ex 9.2, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3

NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 6
Chapter NameCoordinate Geometry
ExerciseEx 6.3
Number of Questions Solved2
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3

Question 1.
In which quadrant or on which axis does each of the points (-2,4), (3, – 1), (-1,0), (1, 2) and (-3, – 5) lie? Verify your answer by locating them on the cartesian plane.
Solution:
NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3 img 1
(i) (-2, 4) lies in II quadrant.
(ii) (3, -1) lies in IV quadrant.
(iii) (-1,0) lies on X-axis.
(iv) (1, 2) lies in I quadrant.
(v) (-3, -5) lies in III quadrant.

Question 2.
Plot the points (x, y) given in the following table on the plane, choosing suitable units of distance on the axes.
NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3 img 2
Solution:
Let 1 unit = 1 cm, then positions of given points in the cartesian plane are given below.
NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3 img 3
We hope the NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 6 Coordinate Geometry Ex 6.3, drop a comment below and we will get back to you at the earliest.