NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 13
Chapter NameSurface Areas and Volumes
ExerciseEx 13.4
Number of Questions Solved9
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4

Question 1.
Find the surface area of a sphere of radius
(i) 10.5 cm
(ii) 5.6 cm
(iii) 14 cm
Solution:
(i) We have, r = 105 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 1

Question 2.
Find the surface area of a sphere of diameter
(i) 14 cm
(ii) 21 cm
(iii) 3.5 m
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 2

Question 3.
Find the total surface area of a hemisphere of radius 10 cm. (Use π = 3.14)
Solution:
We have, r = 10 cm
Total surface area of a hemisphere = 3πr2
= 3 x 3.14 x (10)2
= 9.42 x 100
= 942 cm2

Question 4.
The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
Solution:
Let initial radius, r1 = 7 cm
After increases, r2 = 14 cm
Surface area for initial balloon = 4πr12 = 4 x \(\frac { 22 }{ 7 }\) x 7 x 7 = 88 x 7
A1 = 616 cm2
Surface area for increasing balloon = 4πr22 = 4x \(\frac { 22 }{ 7 }\) x 14 x 14 = 88 x 28
A2 = 2464 cm2
∴ Required ratio = A1 : A2 = 616 : 2464 = 1 : 4

Question 5.
A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-plating it on the inside at the rate of ₹16 per 100 cm2.
Solution:
We have, inner diameter = 10.5 cm
Inner radius = \(\frac { 10.5 }{ 2 }\) cm = 5.25 cm
Curved surface area of hemispherical bowl of inner side = 2πr2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 3

Question 6.
Find the radius of a sphere whose surface area is 154 cm2.
Solution:
Surface area of a sphere = 154 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 4
Hence, the radius of the sphere is 3.5 cm.

Question 7.
The diameter of the Moon is approximately one-fourth of the diameter of the Earth. Find the ratio of their surface areas.
Solution:
Let diameter of the Earth = d1
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 5

Question 8.
A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area of the bowl.
Solution:
Outer radius of the bowl = (Inner radius + Thickness)
= ( 5 + 0.25) cm = 5.25 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 6

Question 9.
A right circular cylinder just encloses a sphere of radius r (see figure). Find
(i) surface area of the sphere,
(ii) curved surface area of the cylinder,
(iii) ratio of the areas obtained in (i) and (ii).
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 7
The radius of the sphere = r
Radius of the cylinder = Radius of the sphere = r
Height of the cylinder = Diameter = 2r
(i) Surface area of the sphere A1 = 4πr2
(ii) Curved surface area of the cylinder = 2πrh
A2 = 2π x r x 2r
A2 = 4πr2
(iii) Required ratio = A1 :A2 = 4πr2 : 4πr2 = 1 : 1

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 13
Chapter NameSurface Areas and Volumes
ExerciseEx 13.3
Number of Questions Solved8
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3

Question 1.
Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. Find its curved surface area.
Solution:
We have, diameter = 10.5 cm
Radius (r) = \(\frac { 10.5 }{ 2 }\) = 5.25 cm
and slant height l= 10 cm
Curved surface area = πrl= \(\frac { 22 }{ 7 }\) x 5.25 x 10 = 165 cm2

Question 2.
Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m.
Solution:
We have, slant height l = 21 m
and diameter = 24 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 1

Question 3.
Curved surface area of a cone is 308 cm2 and its slant height is 14 cm. Find
(i) radius of the base and
(ii) total surface area of the cone.
Solution:
We have, slant height, l= 14cm
Curved surface area of a cone = 308 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 2

Question 4.
A conical tent is 10 m high and the radius of its base is 24 m. Find
(i) slant height of the tent.
(ii) cost of the canvas required to make the tent, if the cost of 1 m2 canvas is ₹70.
Solution:
We have, h = 10 m
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 3
Hence, the slant height of the canvas tent is 26 m.
(ii) Canvas required to make the tent = Curved surface area of tent
= πrl
= π x 24 x 26 = 624π m2
∵ Cost of 1 m2 canvas = ₹ 70
Cost of 624n m2 canvas = ₹ 70 x 624π
= ₹ 70x 624 x \(\frac { 22 }{ 7 }\)
= ₹ 10 x 624 x 22
= ₹ 137280
Hence, the cost of the canvas is ₹ 137280.

Question 5.
What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6m? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm. (Use π = 3.14)
Solution:
Let r, h and l be the radius, height and slant height of the tent, respectively.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 4
The extra material required for stitching margins and cutting = 20 cm = Q2 m Hence, the total length of tarpaulin required = 62.8 + Q2 = 63 m

Question 6.
The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of ₹ 210 per 100 m2.
Solution:
We have, slant height, l = 25m
and diameter = 14m
∴ Radius, r= 7m

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 5
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 6

Question 7.
A joker’s cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps.
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 7
∵ The sheet required to make 1 cap = 550 cm2
∴ The sheet required to make 10 caps = 550 x 10= 5500 cm2

Question 8.
A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of 40 cm and height 1 m. If the outer side of each of the cones is to be painted and the cost of painting is ₹12 per m2, what will be the cost of painting all these cones? (Use π = 3.14 and take \( \sqrt{104} \) = 102)
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 8
Curved surface area of a cone = πrl = 3.14 x 0.2 x 1.02 = 0.64056 m2
Cost of painting per m2 = ₹12
Cost of painting 0.64056 m2 = ₹12 x 0.64056= ₹ 7.68672
Cost of painting for 1 cone = ₹ 7.68672
Cost of painting 50 cones = ₹ 7.68672x 50= ₹ 384.336= ₹ 384.34

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 13
Chapter NameSurface Areas and Volumes
ExerciseEx 13.2
Number of Questions Solved11
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2

Question 1.
The curved surface area of a right circular cylinder of height 14 cm is 88 cm2. Find the diameter of the base of the cylinder.
Solution:
We have, height = 14 cm
Curved surface area Of a right circular cylinder = 88 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 1
r = 1 cm
Diameter = 2 x Radius = 2 x 1 = 2 cm

Question 2.
It is required to make a closed cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square metres of the sheet are required for the same?
Solution:
Let r be the radius and h be the height of the cylinder.
Given, r = \(\frac { 140 }{ 2 }\) = 70 cm = 0.70 m
and h = 1 m
Metal sheet required to make a closed cylindrical tank
= Total surface area
= 2πr (h + r)
= 2 x \(\frac { 22 }{ 7 }\) x 0.7(1 + 0.70)
= 2 x 22 x 0.1 x 170 = 7.48m2
Hence, the sheet required to make a closed cylindrical tank = 7.48m2

Question 3.
A metal pipe is 77 cm long. The inner ft diameter of a cross section is 4 cm, the outer diameter being 4.4 cm (see figure). Find its
(i) inner curved surface area.
(ii) outer curved surface area.
(iii) total surface area.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 2
Solution:
We have, h = 77cm
Outer diameter (d1) = 4.4 cm
and inner diameter (d2) = 4 cm
Outer radius (r1) = 2.2 cm
Inner radius (r2) = 2cm
(i) Inner curved surface area = 2πr2h = 2x \(\frac { 22 }{ 7 }\) x 2 x 77 = 88 x 11 = 968 cm2
(ii) Outer curved surface area = 2πr1h
= 2 x \(\frac { 22 }{ 7 }\) x 2.2 x 77
= 44 x 2.2 x 11= 1064.8cm2
(iii) Total surface area = Inner curved surface area + Outer curved surface area + Areas of two bases
= 968 + 1064.8 + 2\(\frac { 22 }{ 7 }\) (r12 – r2)
= 968 + 1064.8 + 2 x \(\frac { 22 }{ 7 }\) [(2.2) – r2]
= [2032.8 + 2 x \(\frac { 22 }{ 7 }\) (4.84 – 4)]
= 2032.8 +\(\frac { 44 }{ 7 }\) x 0.84 = 2032.8+ 44x 0.12
= 2032.8 + 5.28 cm2 = 2038.08 cm2

Question 4.
The diameter of a roller is 84 cm and its length is 120 cm. It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in m2.
Solution:
We have, diameter of a roller = 84 cm
r = radius of a roller = 42 cm
h = 120 cm
To cover 1 revolution = Curved surface area of roller
= 2πrh
= 2 x \(\frac { 22 }{ 7 }\) x 42 x 120
= 44 x 720 cm2
= 31680 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 3
Area of the playground = Takes 500 complete revolutions = 500 x 3.168 m2
= 1584 m2

Question 5.
A cylindrical pillar is 50 cm in diameter and 3.5 m in height. Find the cost of painting the curved surface of the pillar at the rate of ₹12.50 per m2.
Solution:
Given, Diameter = 50 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 4
Curved surface area of the pillar = 2πrh = 2 x \(\frac { 22 }{ 7 }\) x 0.25 x 35
= 2 x 22 x 0.25 x 0.5 = 55 m2
Cost of painting per m2 = ₹ 12.50
Cost of painting 5.5 m2 = ₹ 12.50×5.5 = ₹ 68.75

Question 6.
Curved surface area of a right circular cylinder is 4.4 m2. If the radius of the base of the cylinder is 0.7 m, find its height.Curved surface area of a right circular cylinder is 4.4 m2. If the radius of the base of the cylinder is 0.7 m, find its height.
Solution:
We have, curved surface area of a right circular cylinder = 4.4m2
∴ 2πrh = 4.4
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 5
Hence, the height of the right circular cylinder is 1 m

Question 7.
he inner diameter of a circular well is 3.5 m. It is 10 m deep. Find
(i) its inner curved surface area.
(ii) the cost of plastering this curved surface at the rate of ₹40 per m2.
Solution:
We have, inner diameter = 3.5 m
∴ inner radius = \(\frac { 3.5 }{ 2 }\) m
and h= 10m
(i) Inner curved surface area = 2πrh = 2x \(\frac { 22 }{ 7 }\) x \(\frac { 3.5 }{ 2 }\) x10 = 22 x 5 = 110m2
(ii) Cost of plastering perm2 = ₹40
Cost of plastering 110 m2 = ₹40x 110= ₹4400

Question 8.
In a hot water heating system, there is a cylindrical pipe of length 28 m and diameter 5 cm. Find the total radiating surface in the system.
Solution:
We have, h = 28 m
Diameter = 5 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 6
Total radiating surface in the system = Curved surface area of the cylindrical pipe
= 2πrh =2 x \(\frac { 22 }{ 7 }\) x 0.025 x 28 = 4.4 m2

Question 9.
Find
(i) the lateral or curved surface area of a closed cylindrical petrol storage tank that is 4.2 m in diameter and 4.5 m high.
(ii) how much steel was actually used, if \(\frac { 1 }{ 12 }\) of the steel actually used was wasted in making the tank?
Solution:
(i) We have, diameter = 4.2 m
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 7
Since, \(\frac { 1 }{ 2 }\) of the actual steel used was wasted, therefore the area of the steel which was actually used for making the tank
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 8

Question 10.
In figure, you see the frame of a lampshade. It is to be covered with a decorative cloth. The frame has a base diameter of 20 cm and height of 30 cm. A margin of 2.5 cm is to be given for folding it over the top and bottom of the frame. Find how much cloth is required for covering the lampshade.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 9
Solution:
Given r = \(\frac { 20 }{ 2 }\) cm = 10cm
h = 30 cm
Since, a margin of 2.5 cm is used for folding it over the top and bottom so the total height of frame,
h1 = 30 + 25 + 25
h1 = 35 cm
∴ Cloth required for covering the lampshade = Its curved surface area
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 10

Question 11.
The students of a Vidyalaya were asked to participate in a competition for making and decorating penholders in the shape of a cylinder with a base, using cardboard. Each penholder was to be of radius 3 cm and height 10.5 cm. The Vidyalaya was to supply the competitors with cardboard. If there were 35 competitors, how much cardboard was required to be bought for the competition?
Solution:
Cardboard required by each competitor
= Base area + Curved surface area of one penholder
= πr2 + 2πrh [Given, h = 10.5 cm, r = 13cm]
= \(\frac { 22 }{ 7 }\) x (3)2 + 2 x \(\frac { 22 }{ 7 }\) x 3 x 105
= (28.28 + 198) cm2
= 22828 cm2
For 35 competitors cardboard required = 35 x 22628 = 7920 cm2
Hence, 7920 cm2 of cardboard was required to be bought for the competition.

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4

NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 11
Chapter NameCircles
ExerciseEx 11.4
Number of Questions Solved6
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4

Question 1.
Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord.
Solution:
Let O and O’ be the centres of the circles of radii 5 cm and 3 cm, respectively.
Let AB be their common chord.
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 1
Given, OA = 5 cm, O’A = 3cm and OO’ = 4 cm
∴ AO’2 + OO’2 = 32 + 42 = 9 + 16- 25 = OA2
∴ OO’A is a right angled triangle and right angled at O’
Area of ∆OO’A = \(\frac { 1 }{ 2 }\) x O’A x OO’
= \(\frac { 1 }{ 2 }\) x 3x 4= 6sq units …(i)
Also, area of ∆OO’A = \(\frac { 1 }{ 2 }\) x OO’ x AM
= \(\frac { 1 }{ 2 }\) x 4 x AM =2 AM …(ii)
From Eqs. (i) and (ii), we get
2AM = 6 ⇒ AM = 3
Since, when two circles intersect at two points, then their centre lie on the perpendicular bisector of the common chord.
∴ AB = 2 x AM= 2 x 3 = 6 cm

Question 2.
If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
Solution:
Given: MN and AS are two chords of a circle with centre O, AS and MN intersect at P and MN = AB
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 2
To prove: MP = PB and PN = AP
Construction: Draw OD ⊥ MN and OC ⊥ AB.
Join OP
Proof : ∵ DM = DN = \(\frac { 1 }{ 2 }\) MN (Perpendicular from centre bisects the chord)
and AC = CB = \(\frac { 1 }{ 2 }\) AB (Perpendicular from centre bisects the chord)
MD = BC and DN = AC (∵ MN = AS)…(i)
in ∆ODP and ∆OPC
OD = OC (Equal chords of a circle are equidistant from the centre)
∠ ODP = ∠OCP
OP = OP (Common)
∴ RHS criterion of congruence,
∆ ODP ≅ ∆ OCP
∴ DP = PC (By CPCT)…(ii)
On adding Eqs. (i) and (ii), we get
MD + DP = BC + PC
MP = PB
On subtracting Eq. (ii) from Eq. (i), we get
DN – DP = AC – PC
PN = AP
Hence, MP = PB and PN = AP are proved.

Question 3.
If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
Solution:
Given: RQ and MN are chords of a with centre O. MN and RQ intersect at P and MN = RQ
To prove: ∠ OPC = ∠ OPB
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 3
Construction: Draw OC ⊥ RQ and OB ⊥ MN.
Join OP.
Proof: In ∆ OCP and ∆ OBP, we get
∠ OCP = ∠ OBP (Each = 90°)
OP = OP (Common)
OC = OB (Equal chords of a circle are equidistant from the centre)
∴ By RHS criterion of congruence, we get
∆ OCP ≅ ∆ OBP
∴ ∠ OPC = ∠ OPB (By CPCT)

Question 4.
If a line intersects two concentric circles (circles with the same centre) with centre 0 at A, B, C and D, prove that AB = CD (see figure).
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 4
Solution:
Let OP be the perpendicular from O on line l. Since, the perpendicular from the centre of a circle to a chord
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 5
Now, BC is the chord of the smaller circle and OP ⊥ BC.
∴ BP = PC ……(i)
Since, AD is a chord of the larger circle and OP ⊥ AD.
∴ AP = PD …(ii)
On subtracting Eq. (i) from Eq. (ii), we get
AP – BP = PD – PC
⇒ AB = CD
Hence proved.

Question 5.
Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?
Solution:
Let O be the centre of the circle and Reshma, Salma and Mandip are represented by the points Ft, S and M, respectively.
Let RP = xm.
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 6
From Eqs. (i) and (ii), we get
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 7
Hence, the distance between Reshma and Mandip is 9.6 m.

Question 6.
A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.
Solution:
Let Ankur, Syed and David standing on the point P, Q and R.
Let PQ = QR = PR = x
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 8
Therefore, ∆ PQR is an equilateral triangle. Drawn altitudes PC, QD and RN from vertices to the sides of a triangle and intersect these altitudes at the centre of a circle M.
As PQR is an equilateral, therefore these altitudes bisects their sides.
In ∆ PQC,
PQ2 = PC2 + QC2 (By Pythagoras theorem)
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 9
NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4 img 10

We hope the NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4, help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 11 Circles Ex 11.4, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2

NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2.

BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 12
Chapter NameConstructions
ExerciseEx 12.2
Number of Questions Solved5
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2

Question 1.
Construct a ∆ ABC in which BC = 7 cm, ∠B = 75° and AB + AC = 13 cm.
Solution:
Given that, in ∆ ABC, BC = 7 cm, ∠B = 75° and AS + AC = 13 cm
Steps of construction

  1. Draw the base BC = 7 cm
    NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 1
  2. At the point 6 make an ∠XBC = 75°.
  3. Cut a line segment BD equal to AB + AC = 13 cm from the ray BX.
  4. Join DC.
  5. Make an ∠DCY = ∠BDC.
  6. Let CY intersect BX at A.
    Then, ABC is the required triangle.

Question 2.
Construct a ∆ ABC in which BC = 8 cm, ∠B = 45° and AB – AC = 35 cm.
Solution:
Given that, in ∆ ABC,
BC = 8 cm, ∠B = 45°and AB – AC = 3.5 cm
NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 2
Steps of construction

  1. Draw the base BC = 8 cm
  2. At the point B make an ∠XBC = 45°.
  3. Cut the line segment BD equal to AB – AC = 3.5 cm from the ray BX.
  4. Join DC.
  5. Draw the perpendicular bisector, say PQ of DC.
  6. Let it intersect BX at a point A
  7. Join AC.

Question 3.
Construct a ∆ ABC in which QR = 6 cm, ∠Q = 60° and PR – PQ = 2 cm.
Solution:
Given that, in ∆ ABC, QR = 6 crn ∠Q = 60° and PR – PQ = 2 cm
Steps of construction

  1. Draw the base QR = 6 cm
  2. At the point Q make an ∠XQR = 60°.
  3. Cut line segment QS = PR- PQ (= 2 cm) from the line QX extended on opposite side of line segment QR.
  4. Join SR.
  5. Draw the perpendicular bisector LM of SR.
  6. Let LM intersect QX at P.
  7. Join PR.
    NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 3

Question 4.
Construct a ∆ XYZ in which ∠Y = 30°, ∠Y = 90° and XY + YZ + ZX = 11 cm.
Solution:
Given that, in ∆XYZ ∠Y = 30°, ∠Z = 90° and XY + YZ + ZX = 11cm
NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 4
Steps of construction

  1. Draw a line segment BC = XY + YZ + ZX = 11 cm
  2. Make ∠LBC = ∠Y = 30° and ∠MCB = ∠Z = 90°.
  3. Bisect ∠LBC and ∠MCB. Let these bisectors meet at a point X.
  4. Draw perpendicular bisectors DE of XB and FG of XC.
  5. Let DE intersect BC at Y and FC intersect BC at Z.
  6. Join XY and XZ.
    Then, XYZ is the required triangle.

Question 5.
Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm.
Solution:
Given that, in A ABC, base BC = 12 cm, ∠B = 90° and AB + BC= 18 cm.
Steps of construction

  1. Draw the base BC = 12 cm
  2. At the point 6, make an ∠XBC = 90°.
  3. Cut a line segment BD = AB+ AC = 18 cm from the ray BX.
  4. Join DC.
  5. Draw the perpendicular bisector PQ of CD to intersect SD at a point A

Join AC.
Then, ABC is the required right triangle.
NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 5