RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2

RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2

Other Exercises

Question 1.
The radius of a circle is 8 cm and the length of one of its chords is 12 cm. Find the distance of the chord from the centre.
Solution:
Radius of circle with centre O is OA = 8 cm
Length of chord AB = 12 cm
OC ⊥ AB which bisects AB at C
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q1.1
∴ AC = CB = 12 x \(\frac { 1 }{ 2 }\) = 6 cm
In ∆OAC,
OA2 = OC2 + AC2 (Pythagoras Theorem)
⇒ (8)2 = OC2 + (6)2
⇒ 64 = OC2 + 36
OC2 = 64 – 36 = 28
∴ OC = \(\sqrt { 28 } \) = \(\sqrt { 4×7 } \) cm
= 2 x 2.6457 = 5.291 cm

Question 2.
Find the length of a chord which is at a distance of 5 cm from the centre of a circle of radius 10 cm.
Solution:
Let AB be a chord of a circle with radius 10 cm. OC ⊥ AB
∴ OA = 10 cm
OC = 5 cm
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q2.1
∵ OC divides AB into two equal parts
i.e. AC = CB
Now in right AOAC,
OA2 = OC2 + AC2 (Pythagoras Theorem)
⇒ (10)2 = (5)2 + AC2
⇒ 100 = 25 + AC2
⇒ AC2 = 100 – 25 = 75
∴ AC = \(\sqrt { 75 } \)= \(\sqrt { 25×3 } \) = 5 x 1.732
∴ AB = 2 x AC = 2 x 5 x 1.732 = 10 x 1.732 = 17.32 cm

Question 3.
Find the length of a chord which is at a distance of 4 cm from the centre of the circle of radius 6 cm.
Solution:
In a circle with centre O and radius 6 cm and a chord AB at a distance of 4 cm from the centre of the circle
i.e. OA = 6 cm and OL ⊥ AB, OL = 4 cm
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q3.1
∵ Perpendicular OL bisects the chord AB at L 1
∴ AL = LB=\(\frac { 1 }{ 2 }\) AB
Now in right ∆OAL,
OA2 = OL2 + AL2 (Pythagoras Theorem)
(6)2 = (4)2 + AL2
⇒ 36=16+AL2
⇒ AL2 = 36 – 16 = 20
∴ AL = \(\sqrt { 20 } \) = \(\sqrt { 4×5 } \) = 2 x 2.236 = 4.472 cm
∴ Chord AB = 4.472 x 2 = 8.944 = 8.94 cm

Question 4.
Give a method to find the centre of a given circle.
Solution:
Steps of construction :
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q4.1
(i) Take three distinct points on the circle say A, B and C.
(ii) Join AB and AC.
(iii) Draw the perpendicular bisectors of AB and AC which intersect each other at O.
O is the required centre of the given circle

Question 5.
Prove that a diameter of a circle which bisects a chord of the circle also bisects the angle subtended by the chord at the centre of the circle.
Solution:
Given : In circle with centre O
CD is the diameter and AB is the chord
which is bisected by diameter at E
OA and OB are joined
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q5.1
To prove : ∠AOB = ∠BOA
Proof : In ∆OAE and ∆OBE
OA = OB (Radii of the circle)
OE = OE (Common)
AE = EB (Given)
∴ ∆OAE = ∆OBE (SSS criterian)
∴ ∠AOE = ∠BOE (c.p.c.t.)
Hence diameter bisect the angle subtended by the chord AB.

Question 6.
A line segment AB is of length 5 cm. Draw a circle of radius 4 cm passing through A and B. Can you draw a circle of radius 2 cm passing through A and B? Give reason in support of your answer.
Solution:
Steps of construction :
(i) Draw a line segment AB = 5 cm.
(ii) Draw a perpendicular bisector of AB.
(iii) With centre A and radius 4 cm, draw an arc which intersects the perpendicular bisector at O.
(iv) With centre O and radius 4 cm, draw a circle which passes through A and B.
With radius 2 cm, we cannot draw the circle passing through A and B as diameter
i. e. 2 + 2 = 4 cm is shorder than 5 cm.
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q6.1

Question 7.
An equilateral triangle of side 9 cm is inscribed in a circle. Find the radius of the circle.
Solution:
Steps of construction :
(i) Draw a line segment BC = 9 cm.
(ii) With centres B and C, draw arcs of 9 cm radius which intersect each other at A.
(iii) Join AB and AC.
∆ABC is the required triangle.
(iv) Draw perpendicular bisectors of sides AB and BC which intersect each other at O.
(v) With centre O and radius OB, draw a circle which passes through A, B and C.
This is the require circle in which ∆ABC is inscribed.
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q7.1
On measuring its radius, it is 5.2 cm
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q7.2

Question 8.
Given an arc of a circle, complete the circle.
Solution:
Steps of construction :
(i) Take three points A, B and C on the arc and join AB and BC.
(ii) Draw the perpendicular bisector of AB and BC which intersect each other at O.
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q8.1
(iii) With centre O and radius OA or OB, complete the circle.
This is the required circle.

Question 9.
Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?
Solution:
Below, three different pairs of circles are drawn:
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q9.1
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q9.2
(i) In the first pair, two circles do not intersect each other. Therefore they have no point in common. .
(ii) In the second pair, two circles intersect (touch) each other at one point P. Therefore they have one point in common.
(iii) In the third pair, two circles intersect each other at two points. Therefore they have two points in common.
There is no other possibility of two circles intersecting each other.
Therefore, two circles have at the most two points in common.

Question 10.
Suppose you are given a circle. Give a construction to find its centre.
Solution:
See Q. No. 4 of this exercise.

Question 11.
The length of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at a distance of 4 cm from the centre, what is the distance of the other chord from the centre? [NCERT]
Solution:
A circle with centre O and two parallel chords
AB and CD are AB = 6 cm, CD = 8 cm
Let OL ⊥ AB and OM ⊥ CD
∴ OL = 4 cm
Let OM = x cm
Let r be the radius of the circle
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q11.1
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q11.2

Question 12.
Two chords AB, CD of lengths 5 cm and 11 cm respectively of a circle are parallel. If the distance between AB and CD is 3 cm, find the radius of the circle.
Solution:
Let two chords AB and CD of length 5 cm and 11 cm are parallel to each other AB = 5 cm, CD = 11 cm
Distance between AB and LM = 3 cm
Join OB and OD
OL and OM are the perpendicular on CD and AB respectively. Which bisects AB and CD.
Let OL = x, then OM = (x + 3)
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q12.1
Now in right ∆OLD,
OD2 = OL2 + LD2
= x2 + (5.5)2
Similarly in right ∆OMB,
OB2 = OM2 + MB2 = (x + 3)2 + (2.5)2
But OD = OB (Radii of the circle)
∴ (x + 3)2 + (2.5)2 = x2 + (5.5)2
x2 + 6x + 9 + 6.25 = x2 + 30.25
6x = 30.25 – 6.25 – 9 = 15
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q12.2

Question 13.
Prove that the line joining the mid-point of a chord to the centre of the circle passes through the mid-point of the corresponding minor arc.
Solution:
Given : A circle with centre O and a chord AB
Let M be the mid point of AB and OM is joined and produced to meet the minor arc AB at N
To prove : M is the mid point of arc AB
Construction : Join OA, OB
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q13.1
Proof: ∵ M is mid point of AB
∴ OM ⊥ AB
In AOAM and OBM,
OA = OB (Radii of the circle)
OM = OM (common)
AM = BM (M is mid point of AB)
∴ ∆OAM = ∆OBM (SSS criterian)
∴ ∠AOM = ∠BOM (c.p.c.t.)
⇒ ∠AOM = ∠BOM
But these are centre angles at the centre made by arcs AN and BN
∴ Arc AN = Arc BN
Hence N divides the arc in two equal parts

Question 14.
Prove that two different circles cannot intersect each other at more than two points.
Solution:
Given : Two circles
To prove : They cannot intersect each other more than two points
Construction : Let two circles intersect each other at three points A, B and C
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q14.1
Proof : Since two circles with centres O and O’ intersect at A, B and C
∴ A, B and C are non-collinear points
∴ Circle with centre O passes through three points A, B and C
and circle with centre O’ also passes through three points A, B and C
But one and only one circle can be drawn through three points
∴Our supposition is wrong
∴ Two circle cannot intersect each other not more than two points.

Question 15.
Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are opposite side of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle. [NCERT]
Solution:
Let r be the radius of the circle with centre O.
Two parallel chords AB = 5 cm, CD = 11 cm
Let OL ⊥ AB and OM ⊥CD
∴ LM = 6 cm
Let OM = x, then
OL = 6 – x
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q15.1
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q15.2
RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 Q15.3

Hope given RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.1

RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.1

Other Exercises

Question 1.
Fill in the blanks: [NCERT]
(i) All points lying inside / outside a circle are called …….. points / ………. points.
(ii) Circles having the same centre and different radii are called …….. circles.
(iii) A point whose distance from the centre of a circle is greater than its radius lies in …….. of the circle.
(iv) A continuous piece of a circle is …….. of the circle.
(v) The longest chord of a circle is a ……… of the circle.
(vi) An arc is a …….. when its ends are the ends of a diameter.
(vii) Segment of a circle is the region between an are and ……..of the circle.
(viii)A circle divides the plane, on which it lies, in …….. parts.
Solution:
(i) All points lying inside / outside a circle are called interior points / exterior points.
(ii) Circles having the same centre and different radii are called concentric circles.
(iii) A point whose distance from the centre of a circle is greater than its radius lies in exterior of the circle.
(iv) A continuous piece of a circle is arc of the circle.
(v) The longest chord of a circle is a diameter of the circle.
(vi) An arc is a semi-circle when its ends are the ends of a diameter.
(vii) Segment of a circle is the region between an arc and centre of the circle.
(viii) A circle divides the plane, on which it lies, in three parts.

Question 2.
Write the truth value (T/F) of the following with suitable reasons: [NCERT]
(i) A circle is a plane figure.
(ii) Line segment joining the centre to any point on the circle is a radius of the circle.
(iii) If a circle is divided into three equal arcs each is a major arc.
(iv) A circle has only finite number of equal chords.
(v) A chord of a cirlce, which is twice as long is its radius is a diameter of the circle.
(vi) Sector is the region between the chord and its corresponding arc.
(vii) The degree measure of an arc is the complement of the central angle containing the arc.
(viii)The degree measure of a semi-circle is 180°.
Solution:
(i) True.
(ii) True.
(iii) True.
(iv) False. As it has infinite number of equal chords.
(v) True.
(vi) False. It is a segment not sector.
(vii) False. As total degree measure of a circle is 360°.
(viii) True.

 

 

Hope given RD Sharma Class 9 Solutions Chapter 15 Areas of Parallelograms and Triangles Ex 15.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion

NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion

These Solutions are part of NCERT Exemplar Solutions for Class 9 Science . Here we have given NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion

MULTIPLE CHOICE QUESTIONS

Question 1.
A particle is moving in a circular path of radius r. The displacement after half a circle would be :
(a) Zero       (b) πr            (c) 2r                  (d) 2πr.
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 1
Answer:
(c) Explanation : Particle is just opposite to the initial position on the circle.

More Resources

Question 2.
A body is thrown vertically upward with velocity u, the greatest height h to which it will rise is,
(a) u/g             (b) u2/2g                (c) u2/g                (d) u/2g.
Answer:
(b) Explanation : u2 – v2 = – 2gh or 0 – u2 = – 2gh (∴ u = 0 at highest point).
∴ h = u2/2g.

Question 3.
The numerical ratio of displacement to distance for a moving object is
(a) always less than 1
(b) always equal to 1
(c) always more than 1
(d) equal or less than 1
Answer:
(d) Explanation : Displacement ≤ distance.

Question 4.
If the displacement of an object is proportional to square of time, then the object moves with
(a) uniform velocity
(b) uniform acceleration
(c) increasing acceleration
(d) decreasing acceleration.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 2

Question 5.
From the given u -t graph (Fig. 1), it can be inferred that the object is
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 3
(a) in uniform motion
(b) at rest
(c) in non-uniform motion
(d) moving with uniform acceleration.
Answer:
(a) Explanation : Velocity of object is constant.

Question 6.
Suppose a boy is enjoying a ride on a merry-go-round which is moving with a constant speed of 10 m s-1. It implies that the boy is
(a) at rest
(b) moving with no acceleration
(c) in accelerated motion
(d) moving with uniform velocity.
Answer:
(c) Explanation : Velocity of the boy changes continuously due to the change in direction of motion in circular path.

Question 7.
Area under a v — t graph represents a physical quantity which has the unit
(a) m2          (b) m                (c) m3              (d) m s-1.
Answer:
(b) Explanation : Area = v x t = (m/s) x s = m.

Question 8.
Four cars A, B, C and D are moving on a levelled road. Their distance versus time graphs are shown in Fig. 2 Choose the correct statement Q
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 4
(a) Car A is faster than car D
(b) Car B is the slowest
(c) Car D is faster than car C
(d) Car C is the slowest.
Answer:
(b) Explanation : Slope of distance – time graph = speed of object.

Question 9.
Which of the following figures represents uniform motion of a moving object correctly ?
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 5
Answer:
(a) Explanation : For uniform motion, distance ∞ time.

Question 10.
Slope of a velocity – time graph gives
(a) the distance
(b) the displacement
(c) the acceleration
(d) the speed.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 6

Question 11.
In which of the following cases of motions, the distance moved and the magnitude of displacement are equal ?
(a) If the car is moving on straight road
(b) If the car is moving in circular path
(c) The pendulum is moving to and fro
(d) The earth is revolving around the Sun.
Answer:
(a)

SHORT ANSWER QUESTIONS

Question 12.
The displacement of a moving object in a given interval of time is zero. Would the distance travelled by the object also be zero ? Justify your answer.
Answer:
No. When object moves in a circular path of radius r, then displacement of object .after completing a circle is zero but distance travelled = 2πr.

Question 13.
How will the equations of motion for an object moving with a uniform velocity change ?
Answer:
Equations of motion of a uniformly accelerated motion of an object are

  1. V = u + at,
  2. S = ut + ½ at2,
  3. v2 – u2 = 2aS.

When object moves with a uniform velocity, its acceleration, a = 0. Hence equations of motion become

  1. V = u,
  2. S = ut,
  3. v= u2.

Question 14.
A girl walks along a straight path to drop a letter in the letterbox and comes back to her initial position. Her displacement-time graph is shown in Fig. 4. Plot a velocity-time graph for the same.
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 7
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 8

Question 15.
A car starts from rest and moves along the x-axis with constant acceleration 5 m s-2 for 8 seconds. If it then continues with constant velocity, what distance will the car cover in 12 seconds since it started from the rest ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 9
Velocity after 8 s,V = u + at = 0 + 5 x 8 = 40 ms-1.
Distance travelled in last 4 s moving with constant velocity, x2 = v t = 40 x 4 = 160 m
∴Total distance = x1 + x2 = 320 m.

Question 16.
A motorcyclist drives from A to B with a uniform speed of 30 km h-1 and returns back with a speed of 20 km h-1. Find its average speed.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 10
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 11

Question 17.
The velocity-time graph (Fig. 6) shows the motion of a cyclist. Find
(i) its acceleration
(ii) its velocity and
(iii) the distance covered by the cyclist in 15 seconds.
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 12
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 13

Question 18.
Draw a velocity versus time graph of a stone thrown vertically upwards and then coming downwards after attaining the maximum height
Answer:
When stone is thrown vertically upwards, it has some initial velocity (u). The velocity of the stone goes on decreasing as it goes upwards and becomes zero at the maximum height. There after, stone begins to fall and its velocity goes on increasing but in opposite direction and becomes equal to the initial velocity (u) when it reaches the point of projection. v – t graph of a stone is shown in figure 7 A. The speed-time graph of the stone is shown in figure 7 B.
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 14

Question 19.
An object is dropped from rest at the height of 150m and simultaneously another object is dropped from rest at the height of 100m.
What is the difference in their heights after 2 s if both the objects drop with same accelerations ? How does the difference in heights vary with time ?
Answer:
Distance moved by the object dropped from height of 150m in 2 seconds can be calculated using
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 15
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 16
Height of the object from ground after 2 seconds = 150 – 20 = 130 m Similarly, distance moved by the other object in 2 seconds = 20 m
Height of the second object from ground after 2 seconds = 100 – 20 = 80 m
∴ Difference in their heights after 2 seconds = 130 m – 80 m = 50 m
Difference in height of both objects remains the same with time.

Question 20.
An object starting from rest travels 20 m in first 2 s and 160 m in next 4 s. What will be the velocity after 7 s from the start ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 17

Question 21.
Using following data, draw time-displacement graph for a moving object :

Time (s)     0     246810121416
Displacement (m) 024446420

Use this graph to find average velocity for first 4 s, for next 4 s and for last 6 s.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 18
Displacement-time graph is shown in figure 8.
Average velocity for first 4s = Slope of displacement-time graph
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 19

Question 22.
An electron moving with a velocity of 5 x 104 ms-1 enters into a uniform electric field and acquires a uniform acceleration of 104 ms-2 in the direction of its initial motion.
(i) Calculate the time in which the electron would acquire a velocity double of its initial velocity.
(ii) How much distance the electron would cover in this time ?
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 20

Question 23.
Obtain a relation for the distance travelled by an object moving with a uniform acceleration in the interval between 4th and 5th seconds.
Answer:
We know, distance travelled by a uniformly accelerated object in time t is given by
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 21

Question 24.
Two stones are thrown vertically upwards simultaneously with their initial velocities uand u2 respectively. Prove that the heights reached by them would be in the ratio of u12 : u22 (Assume upward acceleration is -g and downward acceleration to be +g).
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion image - 22

Hope given NCERT Exemplar Solutions for Class 9 Science Chapter 8 Motion are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS

RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS

Other Exercises

Mark the correct alternative in each of the following:
Question 1.
Two parallelograms are on the same base and between the same parallels. The ratio of their areas is
(a) 1 : 2
(b) 2 : 1
(c) 1 : 1
(d) 3 : 1
Solution:
Two parallelograms which are on the same base and between the same parallels are equal in area
∴ Ratio in their areas =1 : 1 (c)

Question 2.
A triangle and a parallelogram are on the same base and between the same parallels. The ratio of the areas of triangle and parallelogram is
(a) 1 : 1
(b) 1 : 2
(c) 2 : 1
(d) 1 : 3
Solution:
A triangle and a parallelogram which are on the same base and between the same parallels, then area of triangle is half the area of the parallelogram
∴ Their ratio =1:2 (c)

Question 3.
Let ABC be a triangle of area 24 sq. units and PQR be the triangle formed by the mid-points of sides of ∆ABC. Then the area of ∆PQR is
(a) 12 sq. units
(b) 6 sq. units
(c) 4 sq. units
(d) 3 sq. units
Solution:
Area of ∆ABC = 24 sq. units
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q4.1
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q4.2

Question 4.
The median of a triangle divides it into two
(a) congruent triangle
(b) isosceles triangles
(c) right triangles
(d) triangles of equal areas
Solution:
The median of a triangle divides it into two triangles equal in area (d)

Question 5.
In a ∆ABC, D, E, F are the mid-points of sides BC, CA and AB respectively. If
ar(∆ABC) = 16 cm2, then ar(trapezium FBCE) =
(a) 4 cm²
(b) 8 cm²
(c) 12 cm²
(d) 10 cm²
Solution:
In ∆ABC, D, E and F are the mid points of sides BC, CA and AB respectively
ar(∆ABC) = 16 cm²
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q5.1

Question 6.
ABCD is a parallelogram. P is any point on CD. If ar(∆DPA) = 15 cm² and ar(∆APC) = 20 cm², then ar(∆APB) =
(a) 15 cm²
(b) 20 cm²
(c) 35 cm²
(d) 30 cm²
Solution:
In ||gm ABCD, P is any point on CD
AP, AC and PB are joined
ar(∆DPA) =15 cm²
ar(∆APC) = 20 cm²
Adding, ar(∆ADC) = 15 + 20 = 35 cm²
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q6.1
∵ AC divides it into two triangles equal in area
∴ ar(∆ACB) = ar(∆ADC) = 35 cm²
∵ ∆APB and ∆ACB are on the same base
AB and between the same parallels
∴ ar(∆APB) = ar(∆ACB) = 35 cm²(c)

Question 7.
The area of the figure formed by joining the mid-points of the adjacent sides of a rhombus with diagonals 16 cm and 12 cm is
(a) 28 cm²
(b) 48 cm²
(c) 96 cm²
(d) 24 cm²
Solution:
In rhombus ABCD,
P, Q, R and S are the mid points of sides AB, BC, CD and DA respectively and are joined in order to get a quad. PQRS
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q7.1

Question 8.
A, B, C, D are mid points of sides of parallelogram PQRS. If ar(PQRS) = 36 cm²,then ar(ABCD) =
(a) 24 cm²
(b) 18 cm²
(c) 30 cm²
(d) 36 cm²
Solution:
A, B, C and D are the mid points of a ||gm PQRS
Area of PQRS = 36 cm²
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q8.1
The area of ||gm formed by joining AB, BC, CD and DA
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q8.2

Question 9.
The figure obtained by joining the mid-points of the adjacent sides of a rectangle of sides 8 cm and 6 cm is
(a) a rhombus of area 24 cm²
(b) a rectangle of area 24 cm²
(c) a square of area 26 cm²
(d) a trapezium of area 14 cm²
Solution:
Let P, Q, R, S be the mid points of sides of a rectangle ABCD. Whose sides 8 cm and 6 cm
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q9.1
Their PQRS is a rhombus
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q9.2

Question 10.
If AD is median of ∆ABC and P is a point on AC such that ar(∆ADP) : ar(∆ABD) = 2:3, then ar(∆PDC) : ar(∆ABC) is
(a) 1 : 5
(b) 1 : 5
(c) 1 : 6
(d) 3 : 5
Solution:
AD is the median of ∆ABC,
P is a point on AC such that
ar(∆ADP) : ar(∆ABD) = 2:3
Let area of ∆ADP = 2×2
Then area of ∆ABD = 3×2
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q10.1
But area of AABD = \(\frac { 1 }{ 2 }\) area AABC
∴ Area ∆ABC = 2 x area of ∆ABD
= 2 x 3x² = 6x²
and area of ∆PDC = area ∆ADC – (ar∆ADP) = area ∆ABD – ar ∆ADP
= 3x² – 2x² = x²
∴ Ratio = x² : 6x²
= 1 : 6 (c)

Question 11.
Medians of AABC, intersect at G. If ar(∆ABC) = 27 cm2, then ar(∆BGC) =
(a) 6 cm2
(b) 9 cm2
(c) 12 cm2
(d) 18 cm2
Solution:
In ∆ABC, AD, BE and CF are the medians which intersect each other at G
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q11.1

Question 12.
In a ∆ABC if D and E are mid-points of BC and AD respectively such that ar(∆AEC) = 4 cm², then ar(∆BEC) =
(a) 4 cm²
(b) 6 cm²
(c) 8 cm²
(d) 12 cm²
Solution:
In ∆ABC, D and E are the mid points of BC and AD
Join BE and CE ar(∆AEC) = 4 cm²
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q12.1
In ∆ABC,
∵ AD is the median of BC
∴ ar(∆ABD) = ar(∆ACD)
Similarly in ∆EBC,
ED is the median
∴ ar(∆EBD) = ar(∆ECD)
and in ∆ADC, CE is the median
∴ ar(∆FDC) = ar(∆AEC)
= 4 cm
∴ar∆EBC = 2 x ar(∆EDC)
= 2 x 4 = 8 cm (c)

Question 13.
In the figure, ABCD is a parallelogram. If AB = 12 cm, AE = 7.5 cm, CF = 15 cm, then AD =
(a) 3 cm
(b) 6 cm
(c) 8 cm
(d) 10.5 cm
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q13.1
Solution:
In ||gm ABCD, AB = 12 cm AE = 7.5 cm
∴ Area of ||gm ABCD = base x height = AB x AE = 12 x 7.5 cm² = 90 cm²
Now area ||gm ABCD = 90 cm²
and altitude CF = 15 cm
∴ Base AD = \(\frac { Area }{ Altitude }\) = \(\frac { 90 }{ 15 }\) = 6 cm (b)

Question 14.
In the figure, PQRS is a parallelogram. If X and Y are mid-points of PQ and SR respectively and diagonal SQ is joined. The ratio ar(||gm XQRY) : ar(∆QSR) =
(a) 1 : 4
(b) 2 : 1
(c) 1 : 2
(d) 1 : 1
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q14.1
Solution:
In ||gm PQRS, X and Y are the mid points of PQ and SR respectively XY and SQ are joined.
∵ XY bisects PQ and SR
∴ PXYS and XQRY are also ||gms and ar(∆PXYS) = nr(∆XQRY)
∵ ||gm PQRS and AQSR are on the same base and between the same parallel lines
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q14.2

Question 15.
Diagonal AC and BD of trapezium ABCD, in which AB || DC, intersect each other at O. The triangle which is equal in area of ∆AOD is
(a) ∆AOB
(b) ∆BOC
(c) ∆DOC
(d) ∆ADC
Solution:
In trapezium ABCD, diagonals AC and BD intersect each other at O. AB || DC
∆ABC and ∆ABD are on the same base and between the same parallels
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q15.1
∴ ar(∆ABC) = or(∆ABD)
Subtracting ar(∆AOB)
ar(∆ABC) – ar(∆AOB) = ar(∆ADB) – ar(∆AOB)
⇒ ar(∆BOC) = ar(∆AOD)
ar(∆AOD) = ar(∆BOC) (c)

Question 16.
ABCD is a trapezium in which AB || DC. If ar(∆ABD) = 24 cm² and AB = 8 cm, then height of ∆ABC is
(a) 3 cm
(b) 4 cm
(c) 6 cm
(d) 8 cm
Solution:
In trapezium ABCD, AB || DC
AC and BD are joined
ar(∆ABD) = 24 cm2
AB = 8 cm,
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q16.1

Question 17.
ABCD is a trapezium with parallel sides AB = a and DC = b. If E and F are mid-points of non-parallel sides AD and BC respectively, then the ratio of areas of quadrilaterals ABFE and EFCD is
(a) a : b
(b) (a + 3b) : (3a + b)
(c) (3a + b) : (a + 3b)
(d) (2a + b) : (3a + b)
Solution:
In quadrilateral ABCD, E and F are the mid points of AD and BC
AB = a, CD = b
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q17.1
Let h be the height of trapezium ABCD then height of each quadrilateral
ABFE = altitude of quadrilateral EFCD = \(\frac { h }{ 2 }\)
Now area of trap. ABFE = \(\frac { 1 }{ 2 }\) (sum of parallel sides) x altitude
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q17.2

Question 18.
ABCD is a rectangle with O as any point in its interior. If or(∆AOD) = 3 cm2 and ar(∆BOC) = 6 cm2, then area of rectangle ABCD is
(a) 9 cm2
(b) 12 cm2
(c) 15 cm2
(d) 18 cm2
Solution:
In rectangle ABCD, O is any point
ar(∆AOD) = 3 cm2
and ar(∆BOC) = 6 cm2
Join OA, OB, OC and OD
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q18.1
We know that if O is any point in ABCD Then ar(AOB) + ar(COD) = ar(AOB) + ar(BOC)
= 3 + 6 = 9 cm
∴ ar(rect. ABCD) = 2 x 9 = 18 cm (d)

Question 19.
The mid-points of the sides of a triangle ABC along with any of the vertices as the fourth point make a parallelogram of area equal to
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q19.1
Solution:
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q19.2
P,Q and R the mid points of the sides of a ∆ABC then area of any parallelogram formed by the mid points and one vertex of the given triangle has area = \(\frac { 1 }{ 2 }\) area ∆ABC (b)

Question 20.
In the figure, ABCD and FECG are parallelograms equal in area. If ar(∆AQE) = 12 cm2, then ar(||gm FGBQ) =
(a) 12 cm2
(b) 20 cm2
(c) 24 cm2
(d) 36 cm2
RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS Q20.1
Solution:
In the figure, ABCD and EFCG are parallelograms equal in area and ar(∆AQE) = 12 cm2
In ||gm AQED, AE is the diagonal
∴ ar(∆AQE) = \(\frac { 1 }{ 2 }\) ar(||gm AQED)
⇒ 12 cm2 = \(\frac { 1 }{ 2 }\) ar(||gm AQED)
∴ ar(||gm AQED) = 24 cm2
∵ ar ||gm ABCD = ar ||gm FECG
⇒ ar(||gm ∆QED) + ar(|| gm QBCE)
= ar(||gm QBCE) + ar(||gm FGBQ)
⇒ ar(||gm ∆QED) = ar(||gm FGBQ)
= 24 cm2 (c)

Hope given RD Sharma Class 9 Solutions Chapter 14 Quadrilaterals MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Value Based Questions in Science for Class 9 Chapter 8 Motion

Value Based Questions in Science for Class 9 Chapter 8 Motion

These Solutions are part of Value Based Questions in Science for Class 9. Here we have given Value Based Questions in Science for Class 9 Class 9 Chapter 8 Motion

VALUE BASED QUESTIONS

Question 1.
Ram hired a three wheeler from bus stand to his house. The driver A’ of three wheeler followed the shortest path and reached the destination in half an hour. He charged Rs. 50 from Ram. On the same day, Ram’s sister also came to her house after attending a function in other city. She also hired a three wheeler. The driver ‘B’ of the three wheeler took an hour to reach her house and charged Rs. 150 from her.

  1. Is the displacement of both the three wheelers from bus stand to Ram’s house same or different ?
  2. What values are shown by driver A ?

Answer:

  1. Displacement of both the three wheelers is same.
  2. Driver A is honest. He is concerned for others.

More Resources

Question 2.
Two boys A and B were driving cars on a road. There was a sign board on the side of road reading “speed limit” : 50 km/h. Boy A applied brakes and started driving at 45 km/h. On the other hand boy B did not bother about the speed limit. He continued to drive his car at 70 km/h. A police man stopped the car of boy B and fined him If Rs. 500.00. What values are shown by boy A ?
Answer:
boy A is good observer and being a good citizen, he follows the traffic rules.

Hope given Value Based Questions in Science for Class 9 Chapter 8 Motion are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.