MCQ Questions for Class 10 Maths Chapter 4 Quadratic Equations with Answers

Check the below NCERT MCQ Questions for Class 10 Maths Chapter 4 Quadratic Equations with Answers Pdf free download. MCQ Questions for Class 10 Maths with Answers were prepared based on the latest exam pattern. We have provided Quadratic Equations Class 10 Maths MCQs Questions with Answers to help students understand the concept very well. https://mcqquestions.guru/mcq-questions-for-class-10-maths-chapter-4/

Students can also refer to NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations for better exam preparation and score more marks.

Quadratic Equations Class 10 MCQs Questions with Answers

Quadratic Equation Class 10 MCQ Question 1.
Which of the following is a quadratic equation?
(a) x² + 2x+ 1 = (4 – x)² + 3
(b) -2x² = (5 – x)[2x – \(\frac{2}{5}\)]
(c) (k + 1)x² + \(\frac{3}{2}\) x = 7, where k = -1
(d) x³ – x² = (x – 1)³

Answer

Answer: (d) x³ – x² = (x – 1)³


MCQ On Quadratic Equations Class 10 Question 2.
Which of the following is not a quadratic equation?
(a) 2(x – 1)² = 4x² – 2x + 1
(b) 2x – x² = x² + 5
(c) (√2x + √3)² + x² = 3x² – 5x
(d) (x² + 2x)² = x4 + 3 + 4x³

Answer

Answer: (c) (√2x + √3)² + x² = 3x² – 5x


Quadratic Equations Class 10 MCQ Question 3.
Which of the following equations has 2 as a root?
(a) x² – 4x + 5 = 0
(b) x² + 3x – 12 = 0
(c) 2x² – 7x + 6 = 0
(d) 3x² – 6x – 2 = 0

Answer

Answer: (c) 2x² – 7x + 6 = 0


Class 10 Maths Chapter 4 MCQ Question 4.
If \(\frac{1}{2}\) is a root of the equation x² + kx – \(\frac{5}{4}\) = 0 then the value of k is
(a) 2
(b) -2
(c) \(\frac{1}{4}\)
(d) \(\frac{1}{2}\)

Answer

Answer: (a) 2


MCQ Questions On Quadratic Equations For Class 10 Question 5.
Which of the following has the sum of its roots as 3?
(а) 2x² – 3x + 6 = 0
(b) -x² + 3x + 3 = 0
(c) √2x² – \(\frac{3}{√2}\)x + 1 = 0
(d) 3x² – 3x + 3 = 0

Answer

Answer: (b) -x² + 3x + 3 = 0


MCQ Questions For Class 10 Maths Quadratic Equations With Answers Pdf Question 6.
Values of k for which the quadratic equation 2x² – kx + k = 0 has equal roots is
(a) 0 only
(b) 4
(c) 8 only
(d) 0, 8

Answer

Answer: (d) 0, 8


Quadratic Equations MCQs Class 10 Question 7.
Which constant must be added and subtracted to solve the quadratic equation 9x² + \(\frac{3}{4}\) x – √2 = 0 by the method of completing the square?
(a) \(\frac{1}{8}\)
(b) \(\frac{1}{64}\)
(c) \(\frac{1}{4}\)
(d) \(\frac{9}{64}\)

Answer

Answer: (b) \(\frac{1}{64}\)


Class 10 Maths Chapter 4 MCQ With Answers Question 8.
The quadratic equation 2x² – √5x + 1 = 0 has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Answer

Answer: (c) no real roots


MCQ Of Chapter 4 Maths Class 10 Question 9.
Which of the following equations has two distinct real roots?
(a) 2x² – 3√2x + \(\frac{9}{4}\) = 0
(b) x² + x – 5 = 0
(c) x² + 3x + 2√2 = 0
(d) 5x² – 3x + 1 = 0

Answer

Answer: (b) x² + x – 5 = 0


MCQ Of Quadratic Equation Class 10 Question 10.
Which of the following equations has no real roots?
(a) x² – 4x + 3√2 = 0
(b) x² + 4x – 3√2 = 0
(c) x² – 4x – 3√2 = 0
(d) 3x² + 4√3 +4 = 0

Answer

Answer: (a) x² – 4x + 3√2 = 0


MCQ Quadratic Equations Class 10 Question 11.
(x² + 1)² – x² = 0 has
(a) four real roots
(b) two real roots
(c) no real roots
(d) one real roots

Answer

Answer: (c) no real roots


We hope the given NCERT MCQ Questions for Class 10 Maths Chapter 4 Quadratic Equations with Answers Pdf free download will help you. If you have any queries regarding Quadratic Equations CBSE Class 10 Maths MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

MCQ Questions for Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables with Answers

Check the below NCERT MCQ Questions for Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables with Answers Pdf free download. MCQ Questions for Class 10 Maths with Answers were prepared based on the latest exam pattern. We have provided Pair of Linear Equations in Two Variables Class 10 Maths MCQs Questions with Answers to help students understand the concept very well. https://mcqquestions.guru/mcq-questions-for-class-10-maths-chapter-3/

Students can also refer to NCERT Solutions for Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables for better exam preparation and score more marks.

Pair of Linear Equations in Two Variables Class 10 MCQs Questions with Answers

Question 1.
Graphically, the pair of equations 6x – 3y + 10 = 0
2x – y + 9 = 0
represents two lines which are
(a) Intersecting at exactly one point
(b) Intersecting at two points
(c) Coincident
(d) Parallel

Answer

Answer: (d) Parallel


Question 2.
The pair of linear equations x + 2y + 5 = 0 and -3x – 6y + 1 = 0 has
(а) a unique solution
(b) exactly two solutions
(c) infinitely many solutions
(d) no solutions

Answer

Answer: (d) no solutions


Question 3.
If a pair of linear equations is consistent, then
the lines will be
(a) parallel
(b) always coincident
(c) intersecting or coincident
(d) always intersecting

Answer

Answer: (c) intersecting or coincident


Question 4.
The pair of equations y = 0 and y = -7 has
(а) one solution
(b) two solutions
(c) infinitely many solutions
(d) no solution

Answer

Answer: (d) no solution


Question 5.
The pair of equations x = a and y = b graphically represents lines which are
(а) parallel
(b) intersecting at (b, a)
(c) coincident
(d) intersecting at (a, b)

Answer

Answer: (d) intersecting at (a, b)


Question 6.
For what value of k, for the equations 3x – y + 8 = 0 and 6x – ky = -16 represents coincident lines?
(a) \(\frac{1}{2}\)
(b) –\(\frac{1}{2}\)
(c) 2
(d) -2

Answer

Answer: (c) 2


Question 7.
If the lines given by 3x + 2ky = 2 and 2x + 5y + 1 = 0 are parallel, then the value of k is
(a) –\(\frac{5}{4}\)
(b) –\(\frac{2}{5}\)
(c) \(\frac{15}{4}\)
(d) –\(\frac{3}{2}\)

Answer

Answer: (c) \(\frac{15}{4}\)


Question 8.
The value of c for which the pair of equations cx – y = 2 and 6x – 2y = 3 will have infinitely many solutions is
(a) 3
(b) -3
(c) -12
(d) no value

Answer

Answer: (d) no value


Question 9.
One equation of a pair of dependent linear equation is -5x + 7y = 2. The second equation can be
(a) 10x + 14y + 4 = 0
(b) -10x – 14y + 4 = 0
(c) -10x + 14y + 4 = 0
(d) 10x – 14y = -4

Answer

Answer: (d) 10x – 14y = -4


Question 10.
A pair of linear equations which has a unique solution x = 2, y = -3 is
(a) x + y = -1
2x – 3y = -5
(b) 2x + 5y = -11
4x + 10y = -22
(c) 2x – y = 1
3x + 2y = 0
(d) x – 4y – 14 = 0
5x – y – 13 = 0

Answer

Answer: (d) x – 4y – 14 = 0
5x – y – 13 = 0


Question 11.
If x = a, y = b is the solution of the equation x – y = 2 and x + y = 4, then the value of a and b are respectively
(a) 3 and 5
(b) 5 and 3
(c) 3 and 1
(d) -1 and -3

Answer

Answer: (c) 3 and 1


Question 12.
Aruna has only Rs 1 and Rs 2 coins with her. If the total number of coins that she has is 50 and the amount of money with her is Rs 75, then the number of Rs 1 and Rs 2 coins are respectively
(a) 35 and 15
(b) 35 and 20
(c) 15 and 35
(d) 25 and 25

Answer

Answer: (d) 25 and 25


Question 13.
The father’s age is six times his son’s age. Four years hence, the age of the father will be four times his son’s age. The present ages of the son and the father, in years, are respectively
(a) 4 and 24
(b) 5 and 30
(c) 6 and 36
(d) 3 and 24

Answer

Answer: (c) 6 and 36


Question 14.
If the system of equations 2x + 3y = 7
2ax + (a + 6)y = 28
has infinitely many solutions, then
(a) a = 2b
(b) b = 2a
(c) a + 2b = 0
(d) 2a + b = 0

Answer

Answer: (b) b = 2a


Question 15.
The angles of a triangle are x, y and 40°. The difference between the two angles x and y is 30°. The values of x and y are
(a) 45°, 75°
(b) 50°, 80°
(c) 55°, 85°
(d) 55°, 95°

Answer

Answer: (c) 55°, 85°


We hope the given NCERT MCQ Questions for Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables with Answers Pdf free download will help you. If you have any queries regarding Pair of Linear Equations in Two Variables CBSE Class 10 Maths MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

MCQ Questions for Class 11 Physics with Answers Chapter Wise PDF Download

Get Chapter Wise MCQ Questions for Class 11 Physics with Answers PDF Free Download prepared here according to the latest CBSE syllabus and NCERT curriculum https://ncert.nic.in/. Students can practice CBSE Class 11 Physics MCQs Multiple Choice Questions with Answers to score good marks in the examination.

Class 11 Physics MCQs Multiple Choice Questions with Answers

Practicing these CBSE NCERT Objective MCQ Questions of Class 11 Physics with Answers Pdf will guide students to do a quick revision for all the concepts present in each chapter and prepare for final exams.

  1. Physical World Class 11 MCQ Questions
  2. Units and Measurements Class 11 MCQ Questions
  3. Motion in a Straight Line Class 11 MCQ Questions
  4. Motion in a Plane Class 11 MCQ Questions
  5. Laws of Motion Class 11 MCQ Questions
  6. Work, Energy and Power Class 11 MCQ Questions
  7. System of Particles and Rotational Motion Class 11 MCQ Questions
  8. Gravitation Class 11 MCQ Questions
  9. Mechanical Properties of Solids Class 11 MCQ Questions
  10. Mechanical Properties of Fluids Class 11 MCQ Questions
  11. Thermal Properties of Matter Class 11 MCQ Questions
  12. Thermodynamics Class 11 MCQ Questions
  13. Kinetic Theory Class 11 MCQ Questions
  14. Oscillations Class 11 MCQ Questions
  15. Waves Class 11 MCQ Questions

We hope the given NCERT MCQ Questions for Class 11 Physics with Answers PDF Free Download will help you. If you have any queries regarding CBSE Class 11 Physics MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Principle of Mathematical Induction Class 11 Maths MCQs Questions with Answers to help students understand the concept very well. https://mcqquestions.guru/mcq-questions-for-class-11-maths-chapter-4/

Principle of Mathematical Induction Class 11 MCQs Questions with Answers

Mathematical Induction MCQ Question 1.
The sum of the series 1³ + 2³ + 3³ + ………..n³ is
(a) {(n + 1)/2}²
(b) {n/2}²
(c) n(n + 1)/2
(d) {n(n + 1)/2}²

Answer

Answer: (d) {n(n + 1)/2}²
Hint:
Given, series is 1³ + 2³ + 3³ + ……….. n³
Sum = {n(n + 1)/2}²


MCQ On Mathematical Induction Question 2.
If n is an odd positive integer, then an + bn is divisible by :
(a) a² + b²
(b) a + b
(c) a – b
(d) none of these

Answer

Answer: (b) a + b
Hint:
Given number = an + bn
Let n = 1, 3, 5, ……..
an + bn = a + b
an + bn = a³ + b³ = (a + b) × (a² + b² + ab) and so on.
Since, all these numbers are divisible by (a + b) for n = 1, 3, 5,…..
So, the given number is divisible by (a + b)


MCQ Questions On Mathematical Induction Question 3.
1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)}
(a) n(n + 1)
(b) n/(n + 1)
(c) 2n/(n + 1)
(d) 3n/(n + 1)

Answer

Answer: (b) n/(n + 1)
Hint:
Let the given statement be P(n). Then,
P(n): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)} = n/(n + 1).
Putting n = 1 in the given statement, we get
LHS = 1/(1 ∙ 2) = and RHS = 1/(1 + 1) = 1/2.
LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)} = k/(k + 1) ..…(i)
Now 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)} + 1/{(k + 1)(k + 2)}
[1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)}] + 1/{(k + 1)(k + 2)}
= k/(k + 1)+1/{ (k + 1)(k + 2)}.
{k(k + 2) + 1}/{(k + 1)²/[(k + 1)k + 2)] using …(ii)
= {k(k + 2) + 1}/{(k + 1)(k + 2}
= {(k + 1)² }/{(k + 1)(k + 2)}
= (k + 1)/(k + 2) = (k + 1)/(k + 1 + 1)
⇒ P(k + 1): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ……… + 1/{ k(k + 1)} + 1/{(k + 1)(k + 2)}
= (k + 1)/(k + 1 + 1)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Mathematical Induction MCQs Pdf Question 4.
The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6

Answer

Answer: (d) n(n + 1)(2n + 1)/6
Hint:
Given, series is 1² + 2² + 3² + ………..n²
Sum = n(n + 1)(2n + 1)/6


Class 11 Maths Chapter 4 MCQ With Answers Question 5.
{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
(a) 1/(n + 1) for all n ∈ N.
(b) 1/(n + 1) for all n ∈ R
(c) n/(n + 1) for all n ∈ N.
(d) n/(n + 1) for all n ∈ R

Answer

Answer: (a) 1/(n + 1) for all n ∈ N.
Hint:
Let the given statement be P(n). Then,
P(n): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} = 1/(n + 1).
When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.
Therefore LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 1)
Now, [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]
= [1/(k + 1)] ∙ [{(k + 2 ) – 1}/(k + 2)}]
= [1/(k + 1)] ∙ [(k + 1)/(k + 2)]
= 1/(k + 2)
Therefore p(k + 1): [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 2)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Mathematical Induction MCQs Question 6.
For any natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7

Answer

Answer: (c) 5
Hint:
Given, 7n – 2n
Let n = 1
7n – 2n = 71 – 21 = 7 – 2 = 5
which is divisible by 5
Let n = 2
7n – 2n = 72 – 22 = 49 – 4 = 45
which is divisible by 5
Let n = 3
7n – 2n = 73 – 23 = 343 – 8 = 335
which is divisible by 5
Hence, for any natural number n, 7n – 2n is divisible by 5


Principle Of Mathematical Induction Class 11 MCQs Question 7.
1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} =
(a) {n(n + 3)}/{4(n + 1)(n + 2)}
(b) (n + 3)/{4(n + 1)(n + 2)}
(c) n/{4(n + 1)(n + 2)}
(d) None of these

Answer

Answer: (a) {n(n + 3)}/{4(n + 1)(n + 2)}
Hint:
Let P (n): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} .
Putting n = 1 in the given statement, we get
LHS = 1/(1 ∙ 2 ∙ 3) = 1/6 and RHS = {1 × (1 + 3)}/[4 × (1 + 1)(1 + 2)] = ( 1 × 4)/(4 × 2 × 3) = 1/6.
Therefore LHS = RHS.
Thus, the given statement is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then,
P(k): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……… + 1/{k(k + 1)(k + 2)} = {k(k + 3)}/{4(k + 1)(k + 2)}. ……. (i)
Now, 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………….. + 1/{k(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}
= [1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………..…. + 1/{ k(k + 1)(k + 2}] + 1/{(k + 1)(k + 2)(k + 3)}
= [{k(k + 3)}/{4(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}] [using(i)]
= {k(k + 3)² + 4}/{4(k + 1)(k + 2)(k + 3)}
= (k³ + 6k² + 9k + 4)/{4(k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 1)(k + 4)}/{4 (k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 4)}/{4(k + 2)(k + 3)
⇒ P(k + 1): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……….….. + 1/{(k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 2)}/{4(k + 2)(k + 3)}
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


MCQs On Mathematical Induction Question 8.
The nth terms of the series 3 + 7 + 13 + 21 +………. is
(a) 4n – 1
(b) n² + n + 1
(c) none of these
(d) n + 2

Answer

Answer: (b) n² + n + 1
Hint:
Let S = 3 + 7 + 13 + 21 +……….an-1 + an …………1
and S = 3 + 7 + 13 + 21 +……….an-1 + an …………2
Subtract equation 1 and 2, we get
S – S = 3 + (7 + 13 + 21 +……….an-1 + an) – (3 + 7 + 13 + 21 +……….an-1 + an)
⇒ 0 = 3 + (7 – 3) + (13 – 7) + (21 – 13) + ……….+ (an – an-1) – an
⇒ 0 = 3 + {4 + 6 + 8 + ……(n-1)terms} – an
⇒ an = 3 + {4 + 6 + 8 + ……(n-1)terms}
⇒ an = 3 + (n – 1)/2 × {2 ×4 + (n – 1 – 1)2}
⇒ an = 3 + (n – 1)/2 × {8 + (n – 2)2}
⇒ an = 3 + (n – 1) × {4 + n – 2}
⇒ an = 3 + (n – 1) × (n + 2)
⇒ an = 3 + n² + n – 2
⇒ an = n² + n + 1
So, the nth term is n² + n + 1


MCQ On Principle Of Mathematical Induction Question 9.
n(n + 1)(n + 5) is a multiple of ____ for all n ∈ N
(a) 2
(b) 3
(c) 5
(d) 7

Answer

Answer: (b) 3
Hint:
Let P(n) : n(n + 1)(n + 5) is a multiple of 3.
For n = 1, the given expression becomes (1 × 2 × 6) = 12, which is a multiple of 3.
So, the given statement is true for n = 1, i.e. P(1) is true.
Let P(k) be true. Then,
P(k) : k(k + 1)(k + 5) is a multiple of 3
⇒ K(k + 1)(k + 5) = 3m for some natural number m, … (i)
Now, (k + 1)(k + 2)(k + 6) = (k + 1)(k + 2)k + 6(k + 1)(k + 2)
= k(k + 1)(k + 2) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5 – 3) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5) – 3k(k + 1) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5) + 3(k + 1)(k +4) [on simplification]
= 3m + 3(k + 1 )(k + 4) [using (i)]
= 3[m + (k + 1)(k + 4)], which is a multiple of 3
⇒ P(k + 1) : (k + 1 )(k + 2)(k + 6) is a multiple of 3
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Mathematical Induction MCQ Questions Question 10.
Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6

Answer

Answer: (b) n(n+1)(n+2)/6
Hint:
Let each side of the base contains n shots,
then the number of shots in the lowest layer = n + (n – 1) + (n – 2) + ………..+ 1
= n(n + 1)/2
= (n² + n)/2
Now, write (n – 1), (n – 2), ….. for n, then we obtain the number of shots in 2nd, 3rd…layers
So, Total shots = ∑(n² + n)/2
= (1/2)×{∑n² + ∑n}
= (1/2)×{n(n+1)(2n+1)/6 + n(n+1)/2}
= n(n+1)(n+2)/6


Principle Of Mathematical Induction MCQs Question 11.
For any natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7

Answer

Answer: (c) 5
Hint:
Given, 7n – 2n
Let n = 1
7n – 2n = 71 – 21 = 7 – 2 = 5
which is divisible by 5
Let n = 2
7n – 2n = 72 – 22 = 49 – 4 = 45
which is divisible by 5
Let n = 3
7n – 2n = 7³ – 2³ = 343 – 8 = 335
which is divisible by 5
Hence, for any natural number n, 7n – 2n is divisible by 5


Principle Of Mathematical Induction MCQ Question 12.
(n² + n) is ____ for all n ∈ N.
(a) Even
(b) odd
(c) Either even or odd
(d) None of these

Answer

Answer: (a) Even
Hint:
Let P(n): (n² + n) is even.
For n = 1, the given expression becomes (1² + 1) = 2, which is even.
So, the given statement is true for n = 1, i.e., P(1)is true.
Let P(k) be true. Then,
P(k): (k² + k) is even
⇒ (k² + k) = 2m for some natural number m. ….. (i)
Now, (k + 1)² + (k + 1) = k² + 3k + 2
= (k² + k) + 2(k + 1)
= 2m + 2(k + 1) [using (i)]
= 2[m + (k + 1)], which is clearly even.
Therefore, P(k + 1): (k + 1)² + (k + 1) is even
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n)is true for all n ∈ N.


Principle Of Mathematical Induction Class 11 Extra Questions Question 13.
For all n ∈ N, 3×52n+1 + 23n+1 is divisible by
(a) 19
(b) 17
(c) 23
(d) 25

Answer

Answer: (b) 17
Hint:
Given, 3 × 52n+1 + 23n+1
Let n = 1,
3 × 52×1+1 + 23×1+1 = 3 × 52+1 + 23+1 = 3 × 5³ + 24 = 3 × 125 + 16 = 375 + 16 = 391
Which is divisible by 17
Let n = 2,
3 × 52×2+1 + 23×2+1 = 3 × 54+1 + 26+1 = 3 × 55 + 27 = 3 × 3125 + 128 = 9375 + 128
= 9503
Which is divisible by 17
Hence, For all n ∈ N, 3 × 52n+1 + 23n+1 is divisible by 17


Maths MCQs For Class 11 With Answers Pdf Question 14.
Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6

Answer

Answer: (b) n(n+1)(n+2)/6
Hint:
Let each side of the base contains n shots,
then the number of shots in the lowest layer = n + (n – 1) + (n – 2) + ………..+ 1
= n(n + 1)/2
= (n² + n)/2
Now, write (n – 1), (n – 2), ….. for n, then we obtain the number of shots in 2nd, 3rd…layers
So, Total shots = ∑(n² + n)/2
= (1/2) × {∑n² + ∑n}
= (1/2) × {n(n+1)(2n+1)/6 + n(n+1)/2}
= n(n+1)(n+2)/6


Question 15.
{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
(a) 1/(n + 1) for all n ∈ N.
(b) 1/(n + 1) for all n ∈ R
(c) n/(n + 1) for all n ∈ N.
(d) n/(n + 1) for all n ∈ R

Answer

Answer: (a) 1/(n + 1) for all n ∈ N.
Hint:
Let the given statement be P(n). Then,
P(n): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} = 1/(n + 1).
When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.
Therefore LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 1)
Now, [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]
= [1/(k + 1)] ∙ [{(k + 2 ) – 1}/(k + 2)}]
= [1/(k + 1)] ∙ [(k + 1)/(k + 2)]
= 1/(k + 2)
Therefore p(k + 1): [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 2)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Question 16.
(1 + x)n ≥ ____ for all n ∈ N,where x > -1
(a) 1 + nx
(b) 1 – nx
(c) 1 + nx/2
(d) 1 – nx/2

Answer

Answer: (a) 1 + nx
Hint:
Let P(n): (1 + x) )n ≥ (1 + nx).
For n = 1, we have LHS = (1 + x))1 = (1 + x), and
RHS = (1 + 1 ∙ x) = (1 + x).
Therefore LHS ≥ RHS is true.
Thus, P(1) is true.
Let P(k) is true. Then,
P(k): (1 + x)1 ≥ (1 + kx). …….. (i)
Now,(1 + x)k+1 = (1 + x)k (1 + x)
≥ (1 + kx)(1 + x) [using (i)]
=1 + (k + 1)x + kx²
≥ 1 + (k + 1)x + x [Since kx² ≥ 0]
Therefore P(k + 1) : (1 + x)k + 1 ≥ 1 + (k + 1)x
⇒ P(k +1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Question 17.
102n-1 + 1 is divisible by ____ for all N ∈ N
(a) 9
(b) 10
(c) 11
(d) 13

Answer

Answer: (c) 11
Hint:
Let P (n): (102n-1 + 1) is divisible by 11.
For n=1, the given expression becomes {10(2×1-1) + 1} = 11, which is divisible by 11.
So, the given statement is true for n = 1, i.e., P (1) is true.
Let P(k) be true. Then,
P(k): (102k-1 + 1) is divisible by 11
⇒ (102k-1 + 1) = 11 m for some natural number m.
Now, {102(k-1)-1 – 1 + 1} = (102k+1 + 1) = {10² ∙ 10(2k+1)+ 1}
= 100 × {102k-1 + 1 } – 99
= (100 × 11 m) – 99
= 11 × (100 m – 9), which is divisible by 11
⇒ P (k + 1) : {102(k-1) – 1 + 1} is divisible by 11
⇒ P (k + 1) is true, whenever P(k) is true.
Thus, P (1) is true and P(k + 1) is true , whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Question 18.
For all n∈N, 72n − 48n−1 is divisible by :
(a) 25
(b) 2304
(c) 1234
(d) 26

Answer

Answer: (b) 2304
Hint:
Given number = 72n − 48n − 1
Let n = 1, 2 ,3, 4, ……..
72n − 48n − 1 = 7² − 48 − 1 = 49 – 48 – 1 = 49 – 49 = 0
72n − 48n − 1 = 74 − 48 × 2 − 1 = 2401 – 96 – 1 = 2401 – 97 = 2304
72n − 48n − 1 = 76 − 48 × 3 − 1 = 117649 – 144 – 1 = 117649 – 145 = 117504 = 2304 × 51
Since, all these numbers are divisible by 2304 for n = 1, 2, 3,…..
So, the given number is divisible by 2304


Question 19.
The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6

Answer

Answer: (d) n(n + 1)(2n + 1)/6
Hint:
Given, series is 1² + 2² + 3² + ………..n²
Sum = n(n + 1)(2n + 1)/6


Question 20.
{1/(3 ∙ 5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ……. + 1/{(2n + 1)(2n + 3)} =
(a) n/(2n + 3)
(b) n/{2(2n + 3)}
(c) n/{3(2n + 3)}
(d) n/{4(2n + 3)}

Answer

Answer: (c) n/{3(2n + 3)}
Hint:
Let the given statement be P(n). Then,
P(n): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + ……. + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3).
Putting n = 1 in the given statement, we get
and LHS = 1/(3 ∙ 5) = 1/15 and RHS = 1/{3(2 × 1 + 3)} = 1/15.
LHS = RHS
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + …….. + 1/{(2k + 1)(2k + 3)} = k/{3(2k + 3)} ….. (i)
Now, 1/(3 ∙ 5) + 1/(5 ∙ 7) + ..…… + 1/[(2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}2(k + 1) + 3
= {1/(3 ∙ 5) + 1/(5 ∙ 7) + ……. + [1/(2k + 1)(2k + 3)]} + 1/{(2k + 3)(2k + 5)}
= k/[3(2k + 3)] + 1/[2k + 3)(2k + 5)] [using (i)]
= {k(2k + 5) + 3}/{3(2k + 3)(2k + 5)}
= (2k² + 5k + 3)/[3(2k + 3)(2k + 5)]
= {(k + 1)(2k + 3)}/{3(2k + 3)(2k + 5)}
= (k + 1)/{3(2k + 5)}
= (k + 1)/[3{2(k + 1) + 3}]
= P(k + 1) : 1/(3 ∙ 5) + 1/(5 ∙ 7) + …….. + 1/[2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}{2(k + 1) + 3}]
= (k + 1)/{3{2(k + 1) + 3}]
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for n ∈ N.


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Principle of Mathematical Induction MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Trigonometric Functions Class 11 Maths MCQs Questions with Answers to help students understand the concept very well. https://mcqquestions.guru/mcq-questions-for-class-11-maths-chapter-3/

Trigonometric Functions Class 11 MCQs Questions with Answers

MCQ On Trigonometry For Class 11 Pdf Question 1.
The value of cos² x + cos² y – 2cos x × cos y × cos (x + y) is
(a) sin (x + y)
(b) sin² (x + y)
(c) sin³ (x + y)
(d) sin4 (x + y)

Answer

Answer: (b) sin² (x + y)
Hint:
cos² x + cos² y – 2cos x × cos y × cos(x + y)
{since cos(x + y) = cos x × cos y – sin x × sin y }
= cos² x + cos² y – 2cos x × cos y × (cos x × cos y – sin x × sin y)
= cos² x + cos² y – 2cos² x × cos² y + 2cos x × cos y × sin x × sin y
= cos² x + cos² y – cos² x × cos² y – cos² x × cos² y + 2cos x × cos y × sin x × sin y
= (cos² x – cos² x × cos² y) + (cos² y – cos² x × cos² y) + 2cos x × cos y × sin x × sin y
= cos² x(1- cos² y) + cos² y(1 – cos² x) + 2cos x × cos y × sin x × sin y
= sin² y × cos² x + sin² x × cos² y + 2cos x × cos y × sin x × sin y (since sin² x + cos² x = 1 )
= sin² x × cos² y + sin² y × cos² x + 2cos x × cos y × sin x × sin y
= (sin x × cos y)² + (sin y × cos x)² + 2cos x × cos y × sin x × sin y
= (sin x × cos y + sin y × cos x)²
= {sin (x + y)}²
= sin² (x + y)


Trigonometry MCQ Class 11 Question 2.
If a×cos x + b × cos x = c, then the value of (a × sin x – b²cos x)² is
(a) a² + b² + c²
(b) a² – b² – c²
(c) a² – b² + c²
(d) a² + b² – c²

Answer

Answer: (d) a² + b² – c²
Hint:
We have
(a×cos x + b × sin x)² + (a × sin x – b × cos x)² = a² + b²
⇒ c² + (a × sin x – b × cos x)² = a² + b²
⇒ (a × sin x – b × cos x)² = a² + b² – c²


Trigonometry Class 11 MCQ Question 3.
If cos a + 2cos b + cos c = 2 then a, b, c are in
(a) 2b = a + c
(b) b² = a × c
(c) a = b = c
(d) None of these

Answer

Answer: (a) 2b = a + c
Hint:
Given, cos A + 2 cos B + cos C = 2
⇒ cos A + cos C = 2(1 – cos B)
⇒ 2 cos((A + C)/2) × cos((A-C)/2 = 4 sin²(B/2)
⇒ 2 sin(B/2)cos((A-C)/2) = 4sin² (B/2)
⇒ cos((A-C)/2) = 2sin (B/2)
⇒ cos((A-C)/2) = 2cos((A+C)/2)
⇒ cos((A-C)/2) – cos((A+C)/2) = cos((A+C)/2)
⇒ 2sin(A/2)sin(C/2) = sin(B/2)
⇒ 2{√(s-b)(s-c)√bc} × {√(s-a)(s-b)√ab} = √(s-a)(s-c)√ac
⇒ 2(s – b) = b
⇒ a + b + c – 2b = b
⇒ a + c – b = b
⇒ a + c = 2b


Trigonometric Functions Class 11 MCQ Question 4.
The value of cos 5π is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (c) -1
Hint:
Given, cos 5π = cos (π + 4π) = cos π = -1


Class 11 Trigonometry MCQ Questions Question 5.
In a triangle ABC, cosec A (sin B cos C + cos B sin C) equals
(a) none of these
(b) c/a
(c) 1
(d) a/c

Answer

Answer: (c) 1
Hint:
Given cosec A (sin B cos C + cos B sin C)
= cosec A × sin(B+C)
= cosec A × sin(180 – A)
= cosec A × sin A
= cosec A × 1/cosec A
= 1


Class 11 Maths Chapter 3 MCQ With Answers Question 6.
If the angles of a triangle be in the ratio 1 : 4 : 5, then the ratio of the greatest side to the smallest side is
(a) 4 : (√5 – 1)
(b) 5 : 4
(c) (√5 – 1) : 4
(d) none of these

Answer

Answer: (a) 4 : (√5 – 1)
Hint:
Given, the angles of a triangle be in the ratio 1 : 4 : 5
⇒ x + 4x + 5x = 180
⇒ 10x = 180
⇒ x = 180/10
⇒ x = 18
So, the angle are: 18, 72, 90
Since a : b : c = sin A : sin B : sin C
⇒ a : b : c = sin 18 : sin 72 : sin 90
⇒ a : b : c = (√5 – 1)/4 : {√(10 + 2√5)}/4 : 1
⇒ a : b : c = (√5 – 1) : {√(10 + 2√5)} : 4
Now, c /a = 4/(√5 – 1)
⇒ c : a = 4 : (√5 – 1)


MCQ On Trigonometry For Class 11 Pdf Download Question 7.
The value of cos 180° is
(a) 0
(b) 1
(c) -1
(d) infinite

Answer

Answer: (c) -1
Hint:
180 is a standard degree generally we all know their values but if we want to go theoretically then
cos(90 + x) = – sin(x)
So, cos 180 = cos(90 + 90)
= -sin 90
= -1 {sin 90 = 1}
So, cos 180 = -1


MCQ Of Trigonometry Class 11 Question 8.
The perimeter of a triangle ABC is 6 times the arithmetic mean of the sines of its angles. If the side b is 2, then the angle B is
(a) 30°
(b) 90°
(c) 60°
(d) 120°

Answer

Answer: (b) 90°
Hint:
Let the lengths of the sides if ∆ABC be a, b and c
Perimeter of the triangle = 2s = a + b + c = 6(sinA + sinB + sinC)/3
⇒ (sinA + sinB + sinC) = ( a + b + c)/2
⇒ (sinA + sinB + sinC)/( a + b + c) = 1/2
From sin formula,Using
sinA/a = sinB/b = sinC/c = (sinA + sinB + sinC)/(a + b + c) = 1/2
Now, sinB/b = 1/2
Given b = 2
So, sinB/2 = 1/2
⇒ sinB = 1
⇒ B = π/2


Trigonometry Objective Questions For Class 11 Question 9.
If 3 × tan(x – 15) = tan(x + 15), then the value of x is
(a) 30
(b) 45
(c) 60
(d) 90

Answer

Answer: (b) 45
Hint:
Given, 3×tan(x – 15) = tan(x + 15)
⇒ tan(x + 15)/tan(x – 15) = 3/1
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = (3 + 1)/(3 – 1)
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 4/2
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 2
⇒ sin(x + 15 + x – 15)/sin(x + 15 – x + 15) = 2
⇒ sin 2x/sin 30 = 2
⇒ sin 2x/(1/2) = 2
⇒ 2 × sin 2x = 2
⇒ sin 2x = 1
⇒ sin 2x = sin 90
⇒ 2x = 90
⇒ x = 45


MCQ Questions On Trigonometry Class 11 Question 10.
If the sides of a triangle are 13, 7, 8 the greatest angle of the triangle is
(a) π/3
(b) π/2
(c) 2π/3
(d) 3π/2

Answer

Answer: (c) 2π/3
Hint:
Given, the sides of a triangle are 13, 7, 8
Since greatest side has greatest angle,
Now Cos A = (b² + c² – a²)/2bc
⇒ Cos A = (7² + 8² – 13²)/(2×7×8)
⇒ Cos A = (49 + 64 – 169)/(2×7×8)
⇒ Cos A = (113 – 169)/(2×7×8)
⇒ Cos A = -56/(2×56)
⇒ Cos A = -1/2
⇒ Cos A = Cos 2π/3
⇒ A = 2π/3
So, the greatest angle is
= 2π/3


MCQ On Trigonometry For Class 11 Question 11.
The value of tan 20 × tan 40 × tan 80 is
(a) tan 30
(b) tan 60
(c) 2 tan 30
(d) 2 tan 60

Answer

Answer: (b) tan 60
Hint:
Given, tan 20 × tan 40 × tan 80
= tan 40 × tan 80 × tan 20
= [{sin 40 × sin 80}/{cos 40 × cos 80}] × (sin 20/cos 20)
= [{2 * sin 40 × sin 80}/{2 × cos 40 × cos 80}] × (sin 20/cos 20)
= [{cos 40 – cos 120}/{cos 120 + cos 40}] × (sin 20/cos 20)
= [{cos 40 – cos (90 + 30)}/{cos (90 + 30) + cos 40}] × (sin 20/cos 20)
= [{cos 40 + sin30}/{-sin30 + cos 40}] × (sin 20/cos 20)
= [{(2 × cos 40 + 1)/2}/{(-1 + cos 40)/2}] × (sin 20/cos 20)
= [{2 × cos 40 + 1}/{-1 + cos 40}] × (sin 20/cos 20)
= [{2 × cos 40 × sin 20 + sin 20}/{-cos 20 + cos 40 × cos 20}]
= (sin 60 – sin 20 + sin 20)/(-cos 20 + cos 60 + cos 20)
= sin 60/cos 60
= tan 60
So, tan 20 × tan 40 × tan 80 = tan 60


MCQ Trigonometry Class 11 Question 12.
If the angles of a triangle be in the ratio 1 : 4 : 5, then the ratio of the greatest side to the smallest side is
(a) 4 : (√5 – 1)
(b) 5 : 4
(c) (√5 – 1) : 4
(d) none of these

Answer

Answer: (a) 4 : (√5 – 1)
Hint:
Given, the angles of a triangle be in the ratio 1 : 4 : 5
⇒ x + 4x + 5x = 180
⇒ 10x = 180
⇒ x = 180/10
⇒ x = 18
So, the angle are: 18, 72, 90
Since a : b : c = sin A : sin B : sin C
⇒ a : b : c = sin 18 : sin 72 : sin 90
⇒ a : b : c = (√5 – 1)/4 : {√(10 + 2√5)}/4 : 1
⇒ a : b : c = (√5 – 1) : {√(10 + 2√5)} : 4
Now, c /a = 4/(√5 – 1)
⇒ c : a = 4 : (√5 – 1)


Class 11 Maths Trigonometry MCQ Questions Question 13.
The general solution of √3 cos x – sin x = 1 is
(a) x = n × π + (-1)n × (π/6)
(b) x = π/3 – n × π + (-1)n × (π/6)
(c) x = π/3 + n × π + (-1)n × (π/6)
(d) x = π/3 – n × π + (π/6)

Answer

Answer: (c) x = π/3 + n × π + (-1)n × (π/6)
Hint:
√3 cos x-sin x=1
⇒ (√3/2)cos x – (1/2)sin x = 1/2
⇒ sin 60 × cos x – cos 60 × sin x = 1/2
⇒ sin (x – 60) = 1/2
⇒ sin (x – π/3) = sin 30
⇒ sin (x – π/3) = sinπ/6
⇒ x – π/3 = n × π + (-1)n × (π/6) {where n ∈ Z}
⇒ x = π/3 + n × π + (-1)n × (π/6)


Class 11 Maths Trigonometry MCQs Question 14.
If tan² θ = 1 – e², then the value of sec θ + tan³ θ × cosec θ is
(a) 2 – e²
(b) (2 – e²)1/2
(c) (2 – e²)²
(d) (2 – e²)3/2

Answer

Answer: (d) (2 – e²)3/2
Hint:
Given, tan² θ = 1 – e²
⇒ tan θ = √(1 – e²)
MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers 1
From the figure and Pythagorus theorem,
AC² = AB² + BC²
⇒ AC² = {√(1 – e²)}² + 12
⇒ AC² = 1 – e² + 1
⇒ AC² = 2 – e²
⇒ AC = √(2 – e²)
Now, sec θ = √(2 – e²)
cosec θ = √(2 – e²)/√(1 – e²)
and tan θ = √(1 – e²)
Given, sec θ + tan³ θ × cosec θ
= √(2 – e²) + {(1 – e²)3/2 × √(2 – e²)/√(1 – e²)}
= √(2 – e²) + {(1 – e²) × (1 – e²) × √(2 – e²)/√(1 – e²)}
= √(2 – e²) + (1 – e²) × √(2 – e²)
= √(2 – e²) × (1 + 1 – e²)
= √(2 – e²) × (2 – e²)
= (2 – e²)3/2
So, sec θ + tan³ θ × cosec θ = (2 – e²)3/2


Trigonometry Class 11 MCQ With Answers Question 15.
The value of cos 20 + 2sin² 55 – √2 sin65 is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (b) 1
Hint:
Given, cos 20 + 2sin² 55 – √2 sin65
= cos 20 + 1 – cos 110 – √2 sin65 {since cos 2x = 1 – 2sin² x}
= 1 + cos 20 – cos 110 – √2 sin65
= 1 – 2 × sin {(20 + 110)/2 × sin{(20 – 110)/2} – √2 sin65 {Apply cos C – cos D formula}
= 1 – 2 × sin 65 × sin (-45) – √2 sin65
= 1 + 2 × sin 65 × sin 45 – √2 sin65
= 1 + (2 × sin 65)/√2 – √2 sin65
= 1 + √2 ( sin 65 – √2 sin 65
= 1
So, cos 20 + 2sin² 55 – √2 sin65 = 1


Question 16.
If the radius of the circumcircle of an isosceles triangle PQR is equal to PQ ( = PR), then the angle P is
(a) 2π/3
(b) π/3
(c) π/2
(d) π/6

Answer

Answer: (a) 2π/3
Hint:
Let S be the center of the circumcircle of triangle PQR.
So, SP = SQ = SR = PQ = PR, where SP, SQ & SR are radii.
Thus SPQ & SPR are equilateral triangles.
⇒ ∠QSP = 60°;
Similarly ∠RQP = 60°
⇒ Angle at the center QSP = 120°
So, SRPQ is a rhombus, since all the four sides are equal.
Hence, its opposite angles are equal; so ∠P = ∠QSP = 120°


Question 17.
If cos a + 2cos b + cos c = 2 then a, b, c are in
(a) 2b = a + c
(b) b² = a × c
(c) a = b = c
(d) None of these

Answer

Answer: (a) 2b = a + c
Hint:
Given, cos A + 2 cos B + cos C = 2
⇒ cos A + cos C = 2(1 – cos B)
⇒ 2 cos((A + C)/2) × cos((A-C)/2 = 4 sin² (B/2)
⇒ 2 sin(B/2)cos((A-C)/2) = 4sin² (B/2)
⇒ cos((A-C)/2) = 2sin (B/2)
⇒ cos((A-C)/2) = 2cos((A+C)/2)
⇒ cos((A-C)/2) – cos((A+C)/2) = cos((A+C)/2)
⇒ 2sin(A/2)sin(C/2) = sin(B/2)
⇒ 2{√(s-b)(s-c)√bc} × {√(s-a)(s-b)√ab} = √(s-a)(s-c)√ac
⇒ 2(s – b) = b
⇒ a + b + c – 2b = b
⇒ a + c – b = b
⇒ a + c = 2b


Question 18.
The value of 4 × sin x × sin(x + π/3) × sin(x + 2π/3) is
(a) sin x
(b) sin 2x
(c) sin 3x
(d) sin 4x

Answer

Answer: (c) sin 3x
Hint:
Given, 4 × sin x × sin(x + π/3) × sin(x + 2π/3)
= 4 × sin x × {sin x × cos π/3 + cos x × sin π/3} × {sin x × cos 2π/3 + cos x × sin 2π/3}
= 4 × sin x × {(sin x)/2 + (√3 × cos x)/2} × {-(sin x)/2 + (√3 × cos x)/2}
= 4 × sin x × {-(sin 2x)/4 + (3 × cos 2x)/4}
= sin x × {-sin 2x + 3 × cos 2x}
= sin x × {-sin 2x + 3 × (1 – sin 2x)}
= sin x × {-sin 2x + 3 – 3 × sin 2x}
= sin x × {3 – 4 × sin 2x}
= 3 × sin x – 4 sin 3x
= sin 3x
So, 4 × sin x × sin(x + π/3) × sin(x + 2π/3) = sin 3x


Question 19.
If tan A – tan B = x and cot B – cot A = y, then the value of cot (A – B) is
(a) x + y
(b) 1/x + y
(c) x + 1/y
(d) 1/x + 1/y

Answer

Answer: (d) 1/x + 1/y
Hint:
Given,
tan A – tan B = x ……………. 1
and cot B – cot A = y ……………. 2
From equation,
1/cot A – 1/cot B = x
⇒ (cot B – cot A)/(cot A × cot B) = x
⇒ y/(cot A × cot B) = x {from equation 2}
⇒ y = x × (cot A × cot B)
⇒ cot A × cot B = y/x
Now, cot (A – B) = (cot A × cot B + 1)/(cot B – cot A)
⇒ cot (A – B) = (y/x + 1)/y
⇒ cot (A – B) = (y/x) × (1/y) + 1/y
⇒ cot (A – B) = 1/x + 1/y


Question 20.
The value of (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x) is
(a) tan 6x
(b) 2 tan 6x
(c) 3 tan 6x
(d) 4 tan 6x

Answer

Answer: (b) 2 tan 6x
Hint:
Given, (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x)
⇒ [{2 × sin(7x+5x)/2 × cos(7x-5x)/2}/{2 × cos(7x+5x)/2 × cos(7x-5x)/2}] + [{2 × sin(9x+3x)/2 × cos(9x-3x)/2}/{2 × cos(9x+3x)/2 × cos(9x-3x)/2}]
⇒ [{2 × sin 6x × cosx}/{2 × cos 6x × cosx}] + [{2 × sin 6x × cosx}/{2 × cos 6x × cosx}]
⇒ (sin 6x/cos 6x) + (sin 6x/cos 6x)
⇒ tan 6x + tan 6x
⇒ 2 tan 6x


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Trigonometric Functions MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.