CBSE Class 11th Biology Notes | Biology Class 11 NCERT Notes

Studying from CBSE Class 11th Biology Revision Notes helps students to prepare for the exam in a well-structured and organised way. Making Biology Class 11 NCERT Notes saves students time during revision as they don’t have to go through the entire textbook. In CBSE Notes, students find the summary of the complete chapters in a short and concise way. Students can refer to the NCERT Solutions for Class 11 Biology, to get the answers to the exercise questions.

Class 11 Biology NCERT Notes | Notes of Biology Class 11

Class 11 Bio Notes | Bio Notes Class 11 | Bio Class 11 Notes

  1. The Living World Class 11 Biology Notes
  2. Biological Classification Biology Class 11 Notes
  3. Plant Kingdom Biology Notes Class 11
  4. Animal Kingdom Class 11 Bio Notes
  5. Morphology of Flowering Plants Class 11 Notes
  6. Anatomy of Flowering Plants Class 11 Notes
  7. Structural Organisation in Animals Class 11 Notes
  8. Cell: The Unit of Life Class 11 Notes
  9. Biomolecules Bio Notes Class 11
  10. Cell Cycle and Cell Division Class 11 Notes
  11. Transport in Plants Bio Class 11 Notes
  12. Mineral Nutrition Class 11 Notes Biology
  13. Photosynthesis in Higher Plants Class 11 Notes
  14. Respiration in Plants Class 11 Notes
  15. Plant Growth and Development Class 11 Notes
  16. Digestion and Absorption Class 11 Notes
  17. Breathing and Exchange of Gases Class 11 Notes
  18. Body Fluids and Circulation Class 11 Notes
  19. Excretory Products and their Elimination Class 11 Notes
  20. Locomotion and Movement Class 11 Notes
  21. Neural Control and Coordination Class 11 Notes
  22. Chemical Coordination and Integration Class 11 Notes

We hope students have found these CBSE Revision Notes of Class 11 Biology useful for their studies. If you have any queries related to Biology Class 11 NCERT Notes, drop your questions below in the comment box.

CBSE Class 11th Chemistry Notes | Chemistry Class 11 NCERT Notes

Studying from CBSE Class 11th Chemistry Revision Notes helps students to prepare for the exam in a well-structured and organised way. Making NCERT Notes Class 11 Chemistry saves students time during revision as they don’t have to go through the entire textbook. In CBSE Notes, students find the summary of the complete chapters in a short and concise way. Students can refer to the NCERT Solutions for Class 11 Chemistry, to get the answers to the exercise questions.

NCERT Notes for Class 11 Chemistry | Notes of Chemistry Class 11

Notes of Class 11 Chemistry | Chemistry Class 11 NCERT Notes

  1. Some Basic Concepts of Chemistry Class 11 Notes
  2. Structure of Atom Class 11 Notes
  3. Classification of Elements and Periodicity in Properties Class 11 Notes
  4. Chemical Bonding and Molecular Structure Class 11 Notes
  5. States of Matter Class 11 Notes
  6. Thermodynamics Notes of Class 11 Chemistry
  7. Equilibrium Chemistry Notes Class 11
  8. Redox Reactions Chemistry Class 11 Notes
  9. Hydrogen Class 11 Chem Notes
  10. The s-Block Elements Class 11 Notes
  11. The p-Block Elements Class 11 Notes
  12. Organic Chemistry Some Basic Principles and Techniques
  13. Hydrocarbons Notes of Chemistry Class 11
  14. Environmental Chemistry Class 11 Notes

We hope students have found these CBSE Class 11 Chemistry NCERT Notes useful for their studies. If you have any queries related to NCERT Notes of Chemistry Class 11, drop your questions below in the comment box.

Waves Class 11 Notes Physics Chapter 15

By going through these CBSE Class 11 Physics Notes Chapter 15 Waves, students can recall all the concepts quickly.

Waves Notes Class 11 Physics Chapter 15

→ A wave is a form of disturbance that transmits energy from one place to another without the actual flow of matter as a whole.

→ Waves are of three types:

  1. Mechanical waves,
  2. e.m. waves,
  3. matter waves.

→ Water waves or sound waves are called mechanical or elastic waves as they require a material medium for their propagation.

→ A material medium possesses both elasticities as well as inertia.

→ Light waves don’t require any material medium for their propagation.

→ Light waves are electromagnetic waves or non-mechanical waves which can propagate through a vacuum.

→ Matter waves are associated with moving electrons, protons, neutrons and other fundamental particles and even atoms and molecules.

→ The matter is constituted by electrons, protons, neutrons and other fundamental particles.

→ The waves associated with matter particles are called matter waves.

→ Matter waves arise in the quantum mechanical description of nature.

→ Wave motion is a form of disturbance that is due to the repeated periodic vibrations of the particles of the medium about their mean positions.

→ The motion is handed over from one medium particle to another without any net transport of the medium during wave motion.

→ Mechanical waves are of two types

  1. transverse waves and
  2. longitudinal waves.

→ A wave is said to be a progressive or travelling wave if it travels from one point of the medium to another.

→ The waves on the surface of the water are of two types: capillary waves and gravity waves.

→ The restoring force that produces capillary waves is the surface tension of water.

→ The restoring force that produces gravity waves is the pull of gravity which tends to keep the water surface at its lowest level.

→ The oscillations of the particles in gravity waves are not confined to the surface only but extend with diminishing amplitude to the very bottom.

→ The particle motion in water waves involves a complicated motion, they not only move up and down but also back and forth.

→ The waves in an ocean are a combination of both longitudinal and transverse waves.

→ Transverse and longitudinal waves travel at different speeds in the same medium.

→ k is called propagation constant or angular wavenumber.

→ S.I. unit of k is radian (rad) per metre of rad m-1.

→ The speed of transverse waves in a string is determined by two factors:

  1. Linear mass density i.e. mass per unit length (m),
  2. Tension (T) in the string.

→ Positions of zero amplitude are called nodes.

→ Positions of maximum amplitude are called antinodes.

→ Nodes and antinodes are separated by \(\frac{λ}{4}\).

→ Two successive nodes or antinodes are separated by \(\frac{λ}{2}\).

→ Audible sound waves have a frequency between 20 Hz to 20,000 Hz.

→ The equation of a simple harmonic wave travelling in the positive X-direction is given by
y = A sin (ωt – kx)
where ω = \(\frac{2 \pi}{\mathrm{T}}\) = 2πv
k = \(\frac{2 \pi}{\lambda}\)

→ The particle velocity in a wave is given by v = \(\frac{\mathrm{dy}}{\mathrm{dt}}\)

→ Wave velocity is given by C = \(\frac{\mathrm{dx}}{\mathrm{dt}}\).

→ A wave travelling in negative x-direction is given by
y = A sin (ωt + kx)

→ The speed of sound does not depend on the frequency or wavelength.

→ Sound waves are mechanical waves that can’t propagate in a vacuum.

→ Sound waves can’t travel in sawdust or dry sand because the medium is not continuous.

→ The damping of sound in wood is much larger as compared to that in metals.

→ The higher the frequency of sound greater is the pitch of the sound.

→ The voice of ladies and children is of higher pitch than that of men.

→ Unit of loudness is bell (B) = log\(\frac{\mathrm{I}}{\mathrm{I}_{0}}\).

→ The sound is reflected and refracted according to the same laws as the light does.

→ The wavelength for ultrasonics is very small, therefore they are not diffracted by the ordinary objects or holes etc.

→ The speed of mechanical waves is determined by the properties of the medium i.e. elasticity and inertia and not by the nature, intensity, amplitude or shape of the wave.

→ The velocity of sound is the largest in hydrogen among the gases.

→ Monosyllabic sound is produced in about 0.2 s.

→ The vibrations of the prongs of a tuning fork are transverse and that of the stem are longitudinal.

→ The point where the stem of the tuning fork is connected to the prongs is an antinode.

→ The ends of the prongs are also antinodes.

→ There is a node between them that is nearer to the stem than the ends of the prongs.

→ The speed of sound in the air is not affected by the changes in pressure.

→ For every 1°C rise in temperature, the speed of sound increases by 0. 61 ms-1.

→ Due to a change in temperature, the wavelength of sound waves is affected.

→ Beats are not audible if the beat frequency is more than 10 Hz.

→ If the prong of a tuning fork is loaded near the stem its frequency increases and when it is filled near the stem, the frequency decreases.

→ The number of beats produced per second is equal to the difference in the frequencies of the superposing notes.

→ In the progressive wave, the crest and troughs or compressions and rarefactions move with the speed of the wave.

→ When there is no relative motion between the source and listener, the Doppler’s effect is not observed.

→ When a source of sound moves, it causes a change in the wavelength of k the sound received by the listener.

→ When the listener moves, it causes a change in the number of waves ( received by the listener.

→ If source and listener move in mutually perpendicular .directions, no Doppler’s effect is observed.

→ Not Doppler’s effect is produced when only the medium moves.

→ A musical sound consists of a quick, regular and periodic succession of compressions and rarefactions without a sudden change in amplitude.

→ Pitch, loudness and quality are the characteristics of musical sound.

→ Pitch depends on frequency, loudness depends on intensity and quality depends on the number and intensity of overtones.

→ Pitch increases with an increase in frequency.

→ The ratio of the frequencies of the two nodes is called the interval between them. e.g. interval between 256 and 512 Hertz is 1: 2.

→ Two nodes are said to be in unison if their frequencies are equal i. e. if the interval between them is 1: 1.

→ Some other common intervals found useful in producing musical founds are as follows: octave (1: 2), major tone (8: 9), minor tone (9: 10), semitone (15: 16).

→ The fundamental note is called the first harmonic.

→ If n, be the fundamental frequency, then 2n1, 3n1, 4n1, …. are respectively called second, third, fourth,…. harmonics respectively.

→ Harmonics are the integral multiples of the fundamental frequency.

→ Overtones are the notes of frequency higher than the fundamental frequency actually produced by the instrument.

→ In the strings, all harmonics are produced.

→ In the open organ pipe, all the harmonics are produced.

→ In the closed organ pipe, only the odd harmonics are produced.

→ In an open organ pipe as well as the string the second harmonics is the first overtone.

→ In the closed organ pipe, the third harmonic is the first overtone.

→ The ratio of the frequencies of the overtones in an open organ pipe is 2: 3: 4: 5:…

→ The ratio of the frequency of the overtones in the closed organ pipe is 3: 5: 7: …..

→ The frequency of the notes produced by the organ pipe varies:

  1. directly as \(\sqrt{λ}\) , where λ, is a constant.
  2. ∝ \(\sqrt{T}\) where T is the absolute temperature of the gas.
  3. inversely as \(\sqrt{ρ}\) where ρ is the density of the gas.
  4. inversely as length (l) of the tube.

→ The sound produced by the open organ pipe is comparatively pleasant as compared to that produced by the closed organ pipe.

→ The rarefactions are the regions of decrease in density or pressure and compressions are the regions of increase in density or pressure in air, gas when wave propagates through it.

→ Two waves travelling along the same path in the same or opposite direction superpose.

→ Superposition of waves gives rise to the phenomenon of interference, stationary waves and beats.

→ Interference of waves: Superposition of two waves of the same frequency and same wavelength travelling in the same direction with the same speed results in interference of waves.

→ Constructive interference: Interference is said to be constructive if two waves of the same frequency travelling in the same direction with the same speed superpose on each other such that the resultant displacement is more than the individual displacements.

→ Destructive interference: If the resultant displacement due to the superposition of two waves is less than the individual displacements then it is called destructive interference.

→ The wavelength of a wave: It is defined as the distance between two consecutive points (i.e. two consecutive troughs or crests) in the same phase of wave motion.

→ The fundamental mode of the first harmonic: It is defined as the oscillation mode with the lowest frequency.

→ Infrasonics: Sound waves of frequency less than 20Hz are called infrasonics. They can’t be heard by the human ear.

→ Beats: They are defined as the periodic variations in the intensity of sound due to the superposition of two sound waves of slightly different frequencies.

→ Mechanical or elastic waves: The waves set up and propagated due to the presence of a material medium and its properties of elasticity and inertial are called mechanical waves.

→ Electromagnetic waves: They are defined as the waves set up by the variation in electric and magnetic fields of an oscillating charge.

→ Transverse wave: It is defined as the wave motion set up due to vibrations of medium particles perpendicular to the direction of propagation of the wave.

→ Longitudinal wave: It is defined as the wave motion set up due to the vibrations of the medium particles along the direction of wave propagation.

→ Phase (Φ): It is defined as the argument of sine or cosine function representing a wave. It is the angular periodic position of a wave.

→ Time period (T): It is defined as the time taken by the medium particles to complete one oscillation.

→ Velocity of wave motion (v): It is defined as the ratio of wavelength to the time period i.e. v = \(\frac{λ}{T}\) = vλ, (∵ v = \(\frac{1}{T}\))

→ Stationary wave: It is defined as the wave due to the superposition of two progressive waves of the same frequency and amplitude but travelling in the opposite directions along the same line. It is also called a standing wave.

→ Harmonics: The wave of frequencies having integral multiples of a fundamental frequency are called harmonics of the fundamental wave including itself.

→ Overtones: They are defined as the waves of frequencies having integral multiples of a fundamental frequency but excluding it.

→ The 2nd harmonics is the first overtone, the third harmonics is 2nd overtone and so on.

→ Taut string: It is defined as a string vibrating in any mode/modes fixed at one end and loaded at the other end.

→ Musical sound: It is defined as a sound having series of harmonic waves following each other rapidly at regular intervals of time without a Sudden change in their amplitude. It produces a pleasant effect on the ear of the listener.

→ Noise: It is defined as a sound having series of harmonic waves following each other at irregular intervals of time with a sudden change in their amplitude. It produces a displeasing effect on the ear of the listener.

→ The intensity of sound at a point (I): It is defined as the amount of energy passing per unit time per unit area held perpendicular to the incident sound waves at that point.

→ Temperature coefficient of the velocity of sound (α): It is defined as the change in velocity of sound per Kelvin change in temperature.

→ Capillary waves: They are defined as the ripples of a fairly short wavelength not more than a few centimetres.

→ Gravity waves: They are defined as waves that have wavelengths typically ranging from several metres to several hundred metres.

→ Superposition Principle: It states that when two or more waves of the same nature travel in a medium, then the resultant displacement at a point is the vector sum of the displacement due to the individual waves.

→ Threshold of hearing or zero levels (I0): It is defined as the lowest intensity of sound that can be heard by the human ear. It is about 10-12 Wm-2 for a sound of frequency I KHz.

→ The loudness of a sound: It ¡s defined as the degree of sensation of sound produced ¡n the car. It distinguishes between a loud and a faint sound.

→ Weber Fechner Law : It states that the loudness of sound is proportional to the logarithm of its intensity i.e. L = log10 \(\left(\frac{\mathrm{I}}{\mathrm{I}_{0}}\right)\)

→ Bel (B): Loudness is said to be one bel if the intensity of sound is 10 times the threshold of hearing.

→ Pitch: It ¡s defined as that characteristic of musical sound which helps one to classify a note as a high note or low note.

→ Quality or Timber: Ills defined as that characteristic of musical sound which helps us to distinguish between.two sounds of the same intensity and pitch.

→ Musical scale: It consists of a series of flotes (frequencies) separated by definite and simple intervals so as to produce a musical effect when played in Succession.

→ Decibel (dB): \(\frac{1}{10}\)th of bel is called decible i.e. 1 dB = \(\frac{1}{10}\)B.

→ Keynote: The first note of the lowest frequency is called keynote. Octave: Two notes are said to be octave if the ratio of their frequencies is 2. It is also a musical scale called the diatomic scale which has 8 intervals (octave + 7 other intervals).

→ Shock wave: It is defined as the wave produced by a body moving with a speed greater than the speed of sound. Shock waves carry a large amount of energy and when strike a building rattling sound due to the vibration of the building is produced.

→ Mach number: It is defined as the ratio of the velocity of the body producing shock waves to the velocity of sound.
∴ Mach number = \(\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{v}}\)

→ Echo: It is defined as the repetition of the sound of short duration. It (echo) is heard if the minimum distance between the obstacle reflecting sound waves and the source of sound is 17 m.

→ Reverberation: It is defined as the persistence or prolongation of audible sound after the source has stopped emitting sound. It is due to multiple reflections of sound waves.

→ Reverberation time: It is defined as the time during which the intensity of sound falls to one million of its original value after the source has stopped producing it.

→ The acoustics of Building: It is that branch of science which deals with the design of big halls and auditoriums so that a speech delivered or music produced in them is distinctly and clearly heard at all places in the building.

Important Formulae:
→ Velocity of wave: v = vλ
v = frequency of oscillator generating the wave
λ = wavelength of the wave
v = velocity of wave

→ Velocity of transverse wave in a string:
v = \(\sqrt{\frac{T}{m}}=\sqrt{\frac{T}{\pi r^{2} \rho}}\), where

ρ = density of the material of string
r = radius of string
T = tension Applied on the string
m = mass per unit length of the string

→ Newton’s form ula for velocity of sound in air:
v = \(\sqrt{\frac{P}{\rho}}\)
P = air pressure
ρ = density of air

→ Velocity of elastic waves or longitudinal waves in a medium is:
v = \(\sqrt{\frac{E}{\rho}}\)
E = coefficient of elasticity of the medium
ρ = density of the medium

→ Leplace’s formula for velocity of sound is air/gases:
v = \(\sqrt{\frac{\gamma \mathrm{P}}{\rho}}\) where

E = γP = adiabatic elasticity of air/gas
ρ = density of air/gas
γ = CP/CV.

→ Velocity of wave in gas/liquid medium (Longitudinal wave):
V = \(\sqrt{\frac{Y}{\rho}}\), where

Y = Young’s modulus
ρ = coefficient of rigidity

→ Velocity as a function of:
1. temperature, \(\frac{v_{1}}{v_{2}}=\sqrt{\frac{T_{1}}{T_{2}}}\)

2. density, \(\frac{v_{1}}{v_{2}}=\sqrt{\frac{\rho_{1}}{\rho_{2}}}\)

→ The equation of a plane simple harmonic wave (progressive wave) travelling from left to right is:
y = A sin 2π(\(\frac{\mathrm{t}}{\mathrm{T}}-\frac{\mathrm{x}}{\lambda}\))
= A sin \(\frac{2 \pi}{\lambda}\)(vt – x)
= A sin (ωt – kx)
and from right to left i.e. along – X axis is obtained by replacing
x = -x, i.e. y = A sin \(\frac{2 \pi}{\lambda}\)(vt – x)

→ Phase difference = \(\frac{2 \pi}{\lambda}\) × path difference
or
ΔΦ = \(\frac{2 \pi}{\lambda}\) × Δx

→ Total energy transmitted per Unit volume in waves is given by
E = 2π2 ρ v2 A2
= \(\frac{2 \pi^{2} \rho v^{2} A^{2}}{\lambda^{2}}\)

→ Intensity of wave = \(\frac{2 \pi^{2} \rho v^{2} A^{2}}{\text { area } \times \text { time }}\)

→ Imax = (A1 + A2)2.

→ Imin = (A1 – A2)2.

→ Apparent frequency of sound when:
1. Source moves towards listener at rest is
ν’ = \(\frac{v}{v-v_{s}}\)ν

2. When source moves away from listener at rest is
ν’ = \(\frac{v}{v+v_{s}}\)ν

3. When listener moves towards source at rest is
ν’ = \(\frac{\mathbf{v}+\mathbf{v}_{0}}{\mathbf{v}}\)ν

4. When listener moves away from source at rest is
ν’ = \(\frac{\mathbf{v}-\mathbf{v}_{0}}{\mathbf{v}}\)ν

5. When both source and listener move towards each other
ν” = \(\frac{v-v_{0}}{v+v_{s}}\)ν

6. If both move away from each other, then
ν” = \(\frac{v-v_{0}}{v+v_{s}}\)ν

→ Sabine’s formula for reverberation time is
t = \(\frac{0.166 \mathrm{~V}}{\sum \alpha \mathrm{s}}\), Where
k = constant
V = volume of the hall
α = coefficient of absorption
s = area exposed to sound

→ Particle velocity at any instant in a progressive wave is
v = vo cos 2π (\(\frac{t}{T}-\frac{x}{\lambda}\))
Where vo = \(\frac{2 \pi}{\lambda}\) A = 2πAv
= velocity amplitude.

→ Particle acceleration at any instant of time in a progressive wave is
where ao = ao sin 2π (\(\frac{t}{T}-\frac{x}{\lambda}\))
where ao = 4π2 v2 = ω2
= acceleration amplitude.

Oscillations Class 11 Notes Physics Chapter 14

By going through these CBSE Class 11 Physics Notes Chapter 14 Oscillations, students can recall all the concepts quickly.

Oscillations Notes Class 11 Physics Chapter 14

→ All oscillatory motions are periodic motions but all periodic motions may not be oscillatory.

→ Oscillatory or Vibratory motions are harmonic motions of the simplest type, so they are called simple harmonic motions (S.H.M.).

→ Simple Harmonic Motion is defined as the projection of a uniform circular motion on any diameter of a cycle of reference.

→ The periodic motions are described by fundamental concepts of period$, frequency, amplitude, and displacement.

→ v is the number of oscillations per second.

→ A measurable physical quantity that changes with time is called displacement.

→ The phase difference between displacement and velocity is \(\frac{π}{2}\)

→ The phase difference between displacement and acceleration is π.

→ The S.H.M. is characterized by displacement, amplitude, period, frequency, velocity, acceleration, vibration, and phase.

→ Angular frequency (ω) is related to the period and frequency of the motion by: ω = 2πv = \(\frac{2π}{T}\) .

→ One full oscillation back and forth is known as a cycle or a vibration.

→ A liquid in a U-tube set in oscillations executes S.H.M. with a period T = \(\sqrt{\frac{h}{g}}\), where h is the rise or depression of liquid from the mean position in one limb,

→ The velocity amplitude (vo) of S.H.M. and the acceleration amplitude (ao) are related as follows:
ao = ω vo

→ The necessary and sufficient condition for a particle to execute S.H.M. is that the acceleration is directly proportional to the displacement and is always directed towards the mean position i.e. opposite to the displacement.

→ The work done by a simple pendulum in one complete oscillation is zero.

→ The total energy of S.H.M. is directly proportional to the square of the amplitude.

→ The total energy of S.H.M. is directly proportional to the square of the frequency.

→ The simple pendulum cannot oscillate in weightlessness but the spring can do so.

→ The driving force is a time-dependent force and can be represented by F(t) = fo cos ωt = fo cos 2πvt, v = frequency of driving force.

→ Restoring force must act on the particle executing S.H.M.

→ S.H.M. is represented by y = r sin ωt, where y = displacement of the particle, r = amplitude of oscillation of the particle.

→ Velocity of a particle executing S.H.M. is v = rω cosωt = ω\(\sqrt{r^{2}-y^{2}}\)

→ The maximum velocity of the particle is called velocity amplitude (vo) which is equal to rω.

→ Acceleration of a particle executing a = – ω2y.

→ Acceleration amplitude (i.e. maximum acceleration), ao = ω2r.

→ The velocity of a particle executing S.H.M. is zero at the extreme position and maximum at the mean position.

→ Acceleration is maximum at the extreme position and zeroes at the mean position.

→ The phase difference between velocity and acceleration is \(\frac{π}{2}\)

→ The time period of a simple pendulum is independent of its mass.

→ The graph between l and T2 is a straight line in the case of a simple pendulum.

→ When length of the spring is made n times, its spring constant becomes \(\frac{1}{n}\) times and hence time period will increase \(\sqrt{n}\) times

→ When spring is cut into n equal pieces, the spring constant of each piece will become n times and hence time period will become \(\frac{1}{\sqrt{n}}\) times.

→ The time period of a simple pendulum is oo at the center of the earth because g = 0 at the center of the earth.

→ The time period of a simple pendulum decreases if it accelerates upward with an acceleration a.

→ The time period of a simple pendulum increase if it accelerates downward with an acceleration ‘a’.

→ The time period of the pendulum increases with an increase in length. If its length is increased n times, its time period becomes \(\sqrt{n}\) times.

→ The time period of a simple pendulum increase when it is immersed in a liquid of density σ.

→ The time period of a simple pendulum increase when the temperature of the wire of the bob is increased.

→ The length of a second’s pendulum is 99.3 cm ≈ 1 m.

→ The time period of a simple pendulum of infinite length is 84.6 minutes. In a medium, all oscillations are damped oscillations as their, amplitude decreases with time.

→ Oscillations of a simple pendulum in a room are damped ones.

→ For resonance, frequency of an applied periodic force = natural frequency of the body.

→ The energy-time graph of damped oscillations is shown in the figure here.
Oscillations Class 11 Notes Physics 1
→ Periodic Motion: A motion that repeats itself after regular intervals of time is called periodic motion.

→ Oscillatory or Vibratory Motion: A periodic motion in which a body moves to and fro about a central fixed point (called mean position) is called the oscillatory or vibratory motion of the body of the particle.

→ Driving Force: A time-dependent force applied on an oscillator to increase its vibrations is called a driving force.

→ Second, ’s Pendulum: A pendulum whose time period is 2 seconds is called a second’s pendulum.

→ Undamped Oscillations: The oscillations whose amplitude does not change with time are called undamped oscillations. Such oscillations exist only in a vacuum.

→ Restoring Force: It is defined as the periodic force which comes into play when an object moves away from its equilibrium position while executing S.H.M.

→ Phase: The phase of a vibrating particle at any instant is its state regarding its displacement and direction of vibration at that particular instant. It is denoted by Φ. It is a function of time and is expressed as
Φ = ωt + Φo = \(\frac{2π}{T}\)t + Φo ………..(1)

→ Epoch: It is defined as the initial phase of the vibrating particle i. e. phase at f = 0. It is denoted by Φo. From (1), at t = 0, Φ = Φo.

→ Free Vibrations: When a body vibrates with its own natural frequency, it is said to execute free vibrations.

→ Forced Vibrations: When a body is maintained in a state of vibration by a strong periodic force of frequency other than the natural frequency of the body, the vibrations are said to be forced vibrations.

→ Resonant Vibrations: When a body vibrates with a frequency equal to its natural frequency of vibration, then the vibrations are called resonant vibrations.

→ Resonant vibrations are merely a special case of forced vibrations.

→ Coupled system: A system of two or more oscillators linked together in such a way that there is a mutual exchange of energy between them is called a coupled system.

→ Coupled Oscillations: The oscillations of a coupled system are called coupled oscillations.

→ Force Constant of Spring Constant (k): It is defined as the restoring force per unit displacement, i.e. k = \(\frac{F}{x}\), when F = force, x = displacement of particle executing S.H.M.

→ Phase Difference: The difference in phase angles of two positions of a body or oscillator in periodic motion is called phase difference.

→ Amplitude: The maximum displacement on either side of the mean position of the particle executing S.H.M. is known as the amplitude (A) of the particle.

→ Displacement: Displacement is the change in the position with time from the mean position of oscillatory motion.

→ Period of periodic motion: The smallest time interval after which the process repeats itself is called the period of the periodic motion (T) i.e. It is the time required for one complete cycle or oscillation.

→ Frequency: The reciprocal of the Time Period of motion is known as the frequency. It is the number of oscillations per second, v = \(\frac{1}{T}\).

Important Formulae:
→ Angular frequency/Angular velocity, ω = 2πv = \(\frac{2π}{T}\)

→ Displacement in S.H.M., y(t) = r sin (ωt + Φo).

→ Velocity of particle in S.H.M., v(t) = rωcos (ωt + Φo) = ω\(\sqrt{r^{2}-y^{2}}\)

→ Acceleration in S.H.M., a(c) = – rω2 sin (ωt – Φo) = – ω2y.

→ Time period of a particle in S.H.M. is
T = 2π\(\sqrt{\frac{y}{a}}\) = 2π\(\sqrt{\frac{\mathrm{m}}{\mathrm{k}}}\)

= 2π\(\sqrt{\begin{array}{c}
\text { inertia factor } \\
\hline \text { spring constant }
\end{array}}\)

→ Time period of a mass m suspended by two springs connected in parallel.
T = 2π\(\sqrt{\frac{\mathrm{m}}{\mathrm{k}_{\mathrm{I}}+\mathrm{k}_{2}}}\)

→ Time period of a mass m suspended by two springs connected in . series.
T = 2π\(\sqrt{\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right) m}\)

= 2π\(\sqrt{\frac{m\left(k_{1}+k_{2}\right)}{k_{1} k_{2}}}\)

→ Time period of the simple pendulum, T = 2π\(\sqrt{\frac{l}{\mathrm{~g}}}\)

→ Time period of pendulum decreases if it accelerates upward with an acceleration ‘a’ s.t.
T = 2π\(\sqrt{\frac{l}{g+a}}\)

→ Time period of a simple pendulum increases if it accelerates downward with an acceleration ‘a’ s.t.
T = 2π\(\sqrt{\frac{l}{g-a}}\)

→ Time period of a simple pendulum immersed in a liquid of density σ is T’ = T\(\sqrt{\frac{\rho}{\rho-\sigma}}\) = 2π\(\sqrt{\frac{l}{g} \frac{\rho}{(\rho-\sigma)}}\) , ρ = density of the material of the bob.

→ Increase in time period of a simple pendulum with increase in temperature = \(\frac{\alpha \mathrm{d} \theta \mathrm{T}}{2}\), where T = 2π\(\sqrt{\frac{l}{g}}\)

→ Time period of a cylinder floating in a liquid of density ρl, is T = 2π\(\sqrt{\frac{h \rho}{\rho_{l} g}}\) , where h = height of the cylinder, ρ = density of the material of the cylinder, ρl = density of the liquid.

→ Time period of a liquid in a U-tube is
T’ = 2π\(\sqrt{\frac{h}{g}}\) where h = height of liquid column.

→ Energy of a particle in S.H.M. = 2π2 mv2 r2 = \(\frac{1}{2}\) m ω2r2 = \(\frac{1}{2}\) kr2, where ω = angular frequency, r = amplitude, m = mass of particle.

→ Time period of oscillation of a ball in the neck of an air chamber under isothermal conditions is:
T = 2π\(\sqrt{\frac{\mathrm{mV}}{\mathrm{EA}^{2}}}=\frac{2 \pi}{\mathrm{A}} \sqrt{\frac{\mathrm{mV}}{\mathrm{P}}}\)

Where E = coefficient of elasticity
P = atmospheric pressure
m = mass of ball
V = volume of air in the chamber
A = area of cross-section of the neck of the air chamber
Under isothermal conditions E = P.

→ The mechanical energy of damped oscillations for small damping is given by
E(t) = \(\frac{1}{2}\)kxm2 ebt/m
where xm = r = amplitude. It is obtained by replacing r by xmebt/2m in the equation of energy of a particle in S.H.M.

→ The frequency of damped oscillations is given by
W’ = \(\sqrt{\frac{\mathrm{k}}{\mathrm{m}}-\frac{\mathrm{b}^{2}}{4 \mathrm{~m}^{2}}}\)

Kinetic Theory Class 11 Notes Physics Chapter 13

By going through these CBSE Class 11 Physics Notes Chapter 13 Kinetic Theory, students can recall all the concepts quickly.

Kinetic Theory Notes Class 11 Physics Chapter 13

→ The molecules of the ideal gas are point masses with zero volume.

→ P.E. for the molecules of an ideal gas is zero and they possess K.E. only.

→ There is no. intermolecular force for the molecules of an ideal gas.

→ An ideal gas cannot be converted into solids or liquids which is a consequence of the absence of intermolecular force.

→ No gas in the universe is ideal. Gases such as H2, N2, O2, etc. behave very similarly to ideal gases.

→ The behavior of real gases at high temperatures and low pressure is very similar to ideal gases.

→ NTP stands for normal temperature and pressure.

→ STP stands for standard temperature and pressure.

→ STP and NTP both carry the same meaning and they refer to a temperature of 273 K or 0°C and 1 atm pressure.

→ The kinetic theory of an ideal gas makes use of a few simplifying assumptions for obtaining the relation:
P = \(\frac{1}{3}\)ρC2 = \(\frac{1}{3} \frac{\mathrm{M}}{\mathrm{V}}\)C2 = \(\frac{1}{3} \frac{\mathrm{mn}}{\mathrm{V}}\)C2

where m = mass of each molecule,
n = no. of molecules in the gas.

→ Combined with the ideal gas equation, it yields a kinetic interpretation of temperature
\(\frac{1}{2}\) mC2 = \(\frac{3}{2}\) kBT.

→ Using the law of equipartition of energy, the molar specific heats of gases can be predicted as:
For Monoatomic gases: CV = \(\frac{3}{2}\) R, CP = \(\frac{5}{2}\) R, γ = \(\frac{5}{2}\)

For Diatomic gases: CV = \(\frac{5}{2}\) R, CP = \(\frac{7}{2}\) R, γ = \(\frac{7}{5}\)

For Polyatomic gases: CV = 3R, CP = 4R, γ = \(\frac{4}{3}\)

→ These predictions are in agreement with the experimental values of the specific heat of several gases.

→ The agreement can be improved by including vibrational modes of motion.

→ The mean free path λ is the average distance covered by a molecule between two successive collisions.

→ Brownian motion is a striking confirmation of the kinetic molecular picture of matter.

→ Any layer of gas inside the volume of a container is in equilibrium because the pressure is the same on both sides of the layer.

→ The intermolecular force is minimum for the real gases and zero for ideal gases.

→ Real gases can be liquified as well as solidified.

→ The internal energy of real gases depends on volume, pressure as well as temperature.

→ Real gases don’t obey the gas equation PV = nRT.

→ The volume and pressure of ideal gas become zero at the absolute zero.

→ The molecules of a gas are rigid and perfectly elastic spheres.

→ The molecules of each gas are identical but different from that of the other gases.

→ The molecules of the gases move randomly in all directions with all possible velocities.

→ The molecules of the gas continuously collide with one another as well as with the walls of the containing vessels.

→ The molecular collisions are perfectly elastic.

→ The total energy of the molecules remains constant during collisions.

→ The molecules move with constant velocity along a straight line between the two successive collisions.

→ The density of the gas does not change due to collisions.

→ 1 atm pressure =1.01 × 105 Pa.

→ Maxwell’s law proved that the molecules of a gas move with all possible speeds from 0 to ∞.

→ The no. of molecules having speeds tending to zero or infinity is very very small (almost tending to zero).

→ There is a most probable speed (Cmp) which is possessed by a large number of molecules.

→ Cmp increases with the increase in temperature.

→ Cmp varies directly as the square root of the temperature i.e.
Cmp ∝ \(\sqrt{T}\)

→ Absolute temperature can never be negative.

→ The peak of the no. of molecules (n) versus speed (C) curve corresponds to the most probable speed (Cmp).

→ The number of molecules with higher speeds increases with the rise in temperature.

→ At the constant temperature of the gas, λ decreases with the increase in pressure because the volume of the gas decreases.

→ At constant pressure, the λ increases with an increase in temperature due to the increase in volume.

→ The numerical value of the molar mass in grams is called molecular weight.

→ Law of Gaseous Volumes: It states that when gases react together, they do so in volumes which will be a simple ratio to one another and also to the volumes of product.

→ Law of equipartition of energy: It states that the energy for each degree of freedom in thermal equilibrium is \(\frac{1}{2}\)KBT.

→ Monoatomic gases: The molecule of a monoatomic gas has three translational degrees of freedom and no other modes of motion.
Thus the average energy of a molecule at temperature T is \(\frac{3}{2}\) KBT.

→ The total internal energy of a mole of such a gas is
U = \(\frac{3}{2}\)KB T × NA = \(\frac{3}{2}\)RT

→ Diatomic Gases: The molecule of a diatomic gas has five translational and two rotational degrees of freedom. Using the law of equipartition of energy, the total internal energy of a mole of such a diatomic gas is
U = \(\frac{5}{2}\) KBT × NA = \(\frac{5}{2}\) RT

→ Polyatomic Gases: In general, a polyatomic molecule has three translational and three rotational degrees of freedom and a certain number (0 of vibrational modes. According to the law of equipartition of energy, one mole of such gas has
U = [\(\frac{3}{2}\)KBT + \(\frac{3}{2}\)KBT + fKBT]NA

→ Mean Free Path: Mean free path is the average distance covered between two successive collisions by the gas molecule moving along a straight line.

→ Degree of freedom: It is defined as the number of ways in which a gas molecule can absorb energy.
Or
It is the number of independent quantities that must be known to specify the position and configuration of the system completely.

→ Molar mass: It is defined as the mass of 1 mole of a substance. Molar mass = Avogadro’s no. × mass of one molecule.

→ The law of equilibrium of energy states that if a system is in equilibrium at absolute temperature T, the total energy is distributed equally in different energy modes of absorption, the energy of each mode being equal to \(\frac{1}{2}\)KBT. Each translational and rotational degree of freedom corresponds to one energy model of absorption and has energy \(\frac{1}{2}\)KBT. Each vibrational frequency has two modes of energy (Kinetic and Potential) with corresponding energy equal to 2 × \(\frac{1}{2}\)KBT = KBT.

Important Formulae:
→ K.E./mole of a gas = \(\frac{1}{2}\)MC2 = \(\frac{3}{2}\)RT
K.E./molecule = \(\frac{1}{2}\)mC2 = \(\frac{3}{2}\)kB T

Crms = \(\sqrt{\frac{3 P}{\rho}}=\sqrt{\frac{3 P V}{M}}\)
γ = \(\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{v}}}\)

→ PV = nRT is ideal gas equation.

→ PV = rT is gas equation for one gram of gas.
where r = \(\frac{\mathrm{R}}{\mathrm{M}}\),
M = molecular weight of the gas.

→ The gases actually found in nature are called real gases.

→ Real gases don’t obey Boyle’s law at all temperature.

→ The mean free path is given by:
γ = \(\frac{1}{\sqrt{2 \pi n d^{2}}}\)
= \(\frac{\mathrm{m}}{\sqrt{2} \pi \mathrm{d}^{2} \mathrm{mn}}=\frac{\mathrm{m}}{\sqrt{2} \pi \mathrm{d}^{2} \rho}\)
Where ρ = mn = mass/volume of the gas
= density of gas.

d = diameter of molecule.
n = number densisty = \(\frac{\mathrm{N}}{\mathrm{V}}\)

Also P = \(\frac{\mathrm{RT}}{\mathrm{V}}=\frac{\mathrm{N}}{\mathrm{V}} \frac{\mathrm{R}}{\mathrm{N}}\)T = nkT

∴ n = \(\frac{\mathrm{P}}{\mathrm{kT}}\)

∴ λ = \(\frac{\mathrm{kT}}{\sqrt{2} \pi \mathrm{d}^{2} \mathrm{P}}\)

→ Graham’s law of diffusion:
\(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\sqrt{\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}\)
where R1 and R2 are diffusion rates of gases 1 and 2 having molecular masses M1 and M2.