RD Sharma Class 8 Solutions Chapter 7 Factorization Ex 7.3

RD Sharma Class 8 Solutions Chapter 7 Factorization Ex 7.3

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.3

Other Exercises

Factorize each of the following algebraic expressions.

Question 1.
6x (2x – y) + 7y (2x – y)
Solution:
6x (2x – y) + 7y (2x – y)
= (2x – y) (6x + 7y)
[∵ (2x – y) is common]

Question 2.
2r (y – x) + s (x – y)
Solution:
2r (y – x) + s (x – y)
-2r (x – y) +s (x – y)
= (x – y) (-2r + s)                   [(x – y) is common]
= (x-y) (s-2r)

Question 3.
7a (2x – 3) + 2b (2x – 3)
Solution:
7a (2x – 3) + 3b (2x – 3)
= (2x – 3) (7a + 3b)               [(2x – 3) is common]

Question 4.
9a (6a – 5b) – 12a2 (6a – 5b)
Solution:
9a (6a – 5b) – 12a2 (6a – 5b)
HCF of 9 and 12 = 3
∴ 3a (6a – 5b) (3 – 4a)
{(6a – 5b) is common}

Question 5.
5 (x – 2y)2 + 3 (x – 2y)
Solution:
5 (x – 2y)2 + 3 (x – 2y)
= 5 (x – 2y) (x – 2y) + 3 (x – 2y)
= (x – 2y) {5 (x – 2y) + 3}
{(x – 2y) is common}
= (x – 2y) (5x – 10y + 3)

Question 6.
16 (2l – 3m)2 – 12 (3m – 2l)
Solution:
16 (2l – 3m)2 – 12 (3m-2l)
= 16 (2l – 3m) (2l – 3m) + 12 (2l – 3m)
HCF of 16, 12 = 4 4 (2l-3m) {4 (2l- 3m) + 3}
{(2l – 3m) is common}
= 4 (2l -3m) (8l- 12m+ 3)

Question 7.
3a (x – 2y) – b (x – 2y)
Solution:
3a (x – 2y) – b (x – 2y)
= (x – 2y) (3a – b)
{(x – 2y) is common}

Question 8.
a2 (x + y) + b2 (x + y) + c2 (x + y)
Solution:
a2 (x + y) + b2 (x + y) + c2 (x + 3’)
= (x + y) (a2 + b2 + c2)
{(x + y) is common}

Question 9.
(x-y)2 + (x -y)
Solution:
(x – y)2 + (x- y) = (x – y) (x – y) + (x – y)
= (x – y) (x – y + 1)                          {(a – y) is common}

Question 10.
6 (a + 2b) – 4 (a + 2b)2
Solution:
6 (a + 2b) – 4 (a + 2b)2
= 6 (a + 2b) – 4 (a + 2b) (a + 2b)
HCF of 6, 4 = 2
= 2 {a + 2b) {3 – 2 {a + 2b)
{2 (a + b) is common}
= 2 (a + 2b) (3-2 a- 4b)

Question 11.
a (x -y) + 2b (y – x) + c (x -y)2
Solution:
a (x -y) + 2b (y – x) + c (x -y)2
= a (x – y) – 2b (x – y) + c (x – y) {x – y)
= (x – y) {x – 2b + c (x – y)}
{(a – y) is common}
= (a – y) (a – 2b + cx – cy)

Question 12.
– 4 (a – 2y)2 + 8 (a – 2y)
Solution:
– 4 (x – 2y)2 + 8 (x – 2y)
= – 4 (x – 2y) (x – 2y) + 8 (x – 2y)
{- 4 (x – 2y) is common}
= – 4 (x – 2y) (x – 2y – 2)
= 4 (x – 2y) (2 – x + 2y)

Question 13.
x3 (a – 2b) + a2 (a – 2b)
Solution:
x3 (a – 2b) + x2 (a – 2b)
HCF of x3, x2 = x2
∴ 
x2 (a – 2b) (x + 1)
{x2 (x – 2b) is common}
= x2 (x – 2b) (x + 1)

Question 14.
(2x – 3y) (a + b) + (3x – 2y) (a + b)
Solution:
(2x – 3y) (a + b) + (3x – 2y) (a + b)
= (a + b) {2x – 3y + 3x – 2y}
{(x + b) is common}
= (a + b) (5x – 5y)
= 5 (a + b) (x – y)

Question 15.
4 (x + y) (3a – b) + 6 (a + y) (2b – 3a)
Solution:
4 (x + y) (3a – b) + 6 (a + y) (2b – 3a)
= 4 (x + y) (3a – b) – 6 (x + y) (3a – 2b)
HCF of 4, 6 = 2
= 2 (x + y) {2 (3a – b) – 3 (3a – 2b)}
= 2 (x + 3) {6a – 2b – 9a + 6b}
= 2 (x +y) {-3a + 4b}
= 2 (x + y) (4b – 3a)

Hope given RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.9

RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.9

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.9

Other Exercises

Factorize each of the following quadratic polynomials by using the method of completing the square.
Question 1.
p2 + 6p + 8
Solution:
p2 + 6p + 8
= p2 + 2 x p x 3 + 32 – 32 + 8   (completing the square)
= (p2 + 6p + 32) – 1
= (p + 3)2 – 12
= (P + 3)2 – (1)2       { ∵ a2 + b2  = (a+b) (a-b)}
= (p +3+1) (p + 3 -1)
= (p+4) (p+ 2)

Question 2.
q2 – 10q + 21
Solution:
q2 – 10q + 21
= (q)2 – 2 x q x 5 + (5)2 – (5)2 + 21   (completing the square)
= (q)2 – 2 x q x 5 + (5)2 -25+21
= (q)2-2 x q x 5 + (5)2 – 25 +21
= (q)2-2 x q x 5 + (5)2 – 4
= (q – 5)2 – (2)     {∵ a2 – b2 = (a + b) (a – b)}
= (q- 5 + 2) (q-5-2)
=(q- 3) (q-7)

Question 3.
4y2 + 12y + 5
Solution:
4y+12y + 5
= (2y)2 + 2 x 2y x 3 + (3)2 – (3)2 + 5    (completing the square)
= (2y + 3)2 – 9 + 5
= (2y + 3)2 – 4
= (2y + 3)2-(2)2   {∵ a2 – b2 = (a + b) (a – b)}
= (2y + 3 + 2) (2y + 3 – 2)
= (2y + 5) (2y+ 1)

Question 4.
p2 + 6p- 16
Solution:
p2 + 6p – 16
= (p)2 + 2 x  p x 3 + (3)2 – (3)2 – 16    (completing the square)
= (p)2 + 2 x p x 3 + (3)2 – 9 – 16
= (p + 3)2 – 25
= (p + 3)2 – (5)2     {∵ a2 -b2 = {a + b) (a – b)}
= (p + 3 + 5)(p + 3-5)
= (p + 8) (p – 2)

Question 5.
x2 + 12x + 20
Solution:
x2 + 12x + 20
= (x)2 + 2 x x x 6 + (6)2 – (6)2 + 20   (completing the square)
= (x)2 + 2 x x x6 + (6)2 -36 + 20
= (x + 6)2 -16
= (x + 6)2 – (4)2   {∵ a2 – b2 = (a + b) (a – b)}
= (x + 6 + 4) (x + 6 – 4)
= (x + 10) (x + 2)

Question 6.
a2 – 14a – 51
Solution:
a2 – 14a-51
= (a)2 – 2 x x 7 + (7)2 – (7)2 – 51       (completing the square)
= (a)2 – 2 x a x 7 + (7)2 – 49 – 51
= (a – 7)2 – 100
= (a – 7)2 – (10)2    {∵  a2 – b2 = (a + b) (a – b)}
= (a – 7 + 10) (a – 7 – 10)
= (a + 3) (a – 17)

Question 7.
a2 + 2a – 3
Solution:
a2 + 2a – 3
= (a)2 + 2 x a x 1 + (1)2 – (1)2 – 3   (completing the square)
= (a)2 + 2 x a x 1 + (1)2 – 1 – 3
= (a + 1)2 – 4
= (a + 1)2 – (2){∵ a2 – b2 = (a + b) (a – b)}
= (a + 1 + 2) (a + 1 – 2)
= (a + 3) (a – 1)

Question 8.
4x2 – 12x + 5
Solution:
4x2 – 12x + 5
= (2x)2 – 2 x 2x x 3 + (3)2 – (3)2 + 5  (completing the square)
= (2x)2 – 2 x 2x x 3 + (3)2 -9 + 5
= (2x – 3)2 – 4
= (2x – 3)2 – (2)2      
{∵ a2b2 = (a + b) (a – b)}
=
(2x – 3 + 2) (2x – 3 – 2)
= (2x – 1) (2x – 5)

Question 9.
y2 – 7y + 12
Solution:
RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.9 1
RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.9 2

Question 10.
z2-4z-12
Solution:
z2 – 4z – 12
= (z)2 – 2 z x 2 + (2)2 – (2)2 – 12  (completing the square)
= (z)2 – 2 x z x 2 + (2)2 – 4 – 12
= (z-2)2-16
= (z-2)2-(4)2   {∵ a2 – b2 = (a + b) (a – b)}
= (z – 2 + 4) (z – 2 – 4)
= (z + 2)(z-6)

Hope given RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.9 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.4

RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.4

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.4

Other Exercises

Factorize each of the following expressions :
Question 1.
qr-pr + qs – ps
Solution:
qr- pr + qs-ps
Arranging in suitable groups = r(q-p) +s (q-p)    {(q – p) is common}
= (q-p) (r + s)

Question 2.
p2q -pr2-pq + r2
Solution:
p2q -pr2-pq + r2
= p2q -pq-pr2 + r2 (Arranging in group)
= pq(p- 1)-r2(p-1) {(p – 1) is common}
= (p – 1) (pq – r2)

Question 3.
1 + x + xy + x2y
Solution:
1 + x + xy + x 2y
= 1 (1 + x) +xy (1 +x)
= (1 + x) (1 + xy) {(1 + x) is common}

Question 4.
ax + ay – bx – by
Solution:
ax + ay – bx – by
= a (x + y) – b (x + y)   {(x + y) is coinmon}
= (x+y) (a- b)

Question 5.
xa2 + xb2 -ya2 – yb2
Solution:
xa2 + xb2 – ya2 – yb2
= x (a2 + b2) -y (a2 + b2)   {(a2 + b2) is common}
= {a2 + b2) (x -y)

Question 6.
x2 + xy + xz + yz
Solution:
x2 + xy + xz + yz
= x (x + y) + z(x + y) {(x + y) is common}
= (x + y) (x + z)

Question 7.
2ax + bx + 2ay + by
Solution:
2ax + bx + 2ay + by
= x {2a + b) + y (2a + b)      {(2a + b) is common}
= (2a + b) (x + y)

Question 8.
ab- by- ay +y2
Solution:
ab – by – ay + y2
= b(a-y)-y(a-y)    {(a -y) is common}
= (a-y) (b – y)

Question 9.
axy + bcxy -az- bcz
Solution:
axy + bcxy – az – bcz
= xy (a + bc) – z (a + bc)       {(a + bc) is common}
= (a + bc) (xy – z)

Question 10.
lm2 – mn2 – lm + n2
Solution:
lm2 – mn2 – lm + n2
= m (lm – n2)- 1 (lm – n2)  {(lm – n2) is common}
= (lm – n2) (m – 1)

Question 11.
x– y+ x – x2y2
Solution:
x3 -y2 + x – x2y2
⇒ x3 + x – x2y2 – y2
= x(x2+ 1)-y2(x2+ 1)        {(x2 + 1) is common}
= (x2 + 1) (x -y2)

Question 12.
6xy + 6 – 9y – 4x
Solution:
6xy + 6 – 9y – 4x
= 6 xy – 4x – 9y + 6
2x (3y – 2) – 3 (3y – 2)    {(3y – 2) is common}
= (3y-2) (2x – 3)

Question 13.
x22ax – 2ab + bx
Solution:
x2 – 2ax – 2ab + bx
⇒ x2 – 2ax + bx – 2ab
= x (x – 2a) + b (x – 2a)   {(x – 2a) is common}
= (x – 2a) (x + b)

Question 14.
x3 – 2x2y + 3xy2 – 6y3
Solution:
x3 – 2x2y + 3xy2 – 6y3
= x2 (x – 2y) + 3y2 (x – 2y)     {(x – 2y) is common}
= (x – 2y) (x2 + 3y2)

Question 15.
abx2 + (ay – b) x-y
Solution:
abx2 + (ay – b) x-y
= abx2 + ayx – bx -y 
= ax (bx + y) – 1 (bx + y)               {(bx +y) is common}
= (bx + y) (ax – 1)

Question 16.
(ax + by)2 + (bx – ay)2
Solution:
(ax + by)2 + (bx – ay)2
= a2x2 + b2y2 + 2abxy + b2x2 + a2y2 – 2abxy
= a2x2 + b2y2 + b2x2 + a2y2
= a2x2 + b2x2 + a2y2 + by2
= x2 (a2 + b2) + y2 (a2 + b2)         {(a2 + b2) is common}
= (a2 + b2) (x2 + y2)

Question 17.
16 (ab)3 -24 (a- b)2
Solution:
16 (a – b)3 -24 (a- b)2
HCF of 16, 24 = 8
and HCF of (a – b)3, (a – b)2 = (a – b)2
∴16 (a – b)3 – 24 (a – b)2
= 8 (a-b)2 {2 (a-b)- 3}
{8 (a – b)2 is common}
= 8 (a – b)2 (2a – 2b – 3)

Question 18.
ab (x2 + 1) + x (a2 + b2)
Solution:
ab (x2 + 1) + x (a2 + b2)
= abx2 + ab + a2x + b2x
= abx2 + b2x + a2x + ab
= bx (ax + b) + a (ax + b)  {(ax + b) is common}
= (ax + b) (bx + a)

Question 19.
a2x2 + (ax2 + 1) x + a
Solution:
a2x2 + (ax2 + 1) x + a
= a2x2 + ax3 + x + a
= ax3 + a2x2 + x + a
= ax2 (x + a) + 1 (x + a) {(x + a) is common}
= (x + a) (ax2 + 1)

Question 20.
a(a- 2b -c) + 2bc
Solution:
a(a- 2b -c) + 2bc
= a2– 2ab -ac +2bc
= a (a – 2b) – c (a – 2b) {(a – 2b) is common}
= (a – 2b) (a – c)

Question 21.
a (a + b – c)- bc
Solution:
a (a + b – c) – bc
= a2 + ab – ac – bc
= a (a + b) – c (a + b)   {(a + b) is common}
= (a + b) (a – c)

Question 22.
x2 – 11xy – x +11y
Solution:
x2 – 11xy-x + 11y
= x2 -x – 11 xy + 11 y
= x (x – 1) – 11y (x – 1)   {(x – 1) is common}
= (x- 1) (x- 11y)

Question 23.
ab – a – b + 1
Solution:
ab – a-b + 1
= a (b – 1) – 1 (b – 1)    {(b – 1) is common}
= (b – 1) (a – 1)

Question 24.
x2 + y – xy – x
Solution:
x2 + y – xy – x
= x2 – x- xy + y
= x (x – 1) – y (x – 1)   {(x – 1) is common}
= (x- 1) (x-y)

Hope given RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2

RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Linear Equations in One Variable Ex 9.2

Other Exercises

Solve each of the following equations and also check your result in each case :
Question 1.
\(\frac { 2x + 5 }{ 3 }\) = 3x – 10
Solution:
\(\frac { 2x + 5 }{ 3 }\) = \(\frac { 3x – 10 }{ 1 }\)
By cross multiplication
⇒ 2x + 5 = 3 (3x – 10)
⇒ 2x + 5 = 9x – 30
⇒ 5 + 30 = 9x – 2x (By transposition)
⇒ 35 = 7x
⇒ x = 5
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 1

Question 2.
\(\frac { a – 8 }{ 3 }\) = \(\frac { a – 3 }{ 2 }\)
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 2

Question 3.
\(\frac { 7y + 2 }{ 5 }\) = \(\frac { 6y – 5 }{ 11 }\)
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 3
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 4

Question 4.
x – 2x + 2 – \(\frac { 16 }{ 3 }\) x + 5 = 3 – \(\frac { 7 }{ 2 }\) x.
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 5
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 6

Question 5.
\(\frac { 1 }{ 2 }\) x + 7x – 6 = 7x + \(\frac { 1 }{ 4 }\)
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 7

Question 6.
\(\frac { 3 }{ 4 }\) x + 4x = \(\frac { 7 }{ 8 }\) + 6x – 6
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 8
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 9

Question 7.
\(\frac { 7 }{ 2 }\) x – \(\frac { 5 }{ 2 }\) x = \(\frac { 20 }{ 3 }\) x + 10
Solution:
\(\frac { 7 }{ 2 }\) x – \(\frac { 5 }{ 2 }\) x = \(\frac { 20 }{ 3 }\) x + 10
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 10

Question 8.
\(\frac { 6x + 1 }{ 2 }\) + 1 = \(\frac { 7x – 3 }{ 3 }\)
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 11
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 12

Question 9.
\(\frac { 3a – 2 }{ 3 }\) + \(\frac { 2a + 3 }{ 2 }\) = a + \(\frac { 7 }{ 6 }\)
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 13
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 14

Question 10.
x – \(\frac { x – 1 }{ 2 }\) = 1 – \(\frac { x – 2 }{ 3 }\)
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 15
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 16

Question 11.
\(\frac { 3x }{ 4 }\) – \(\frac { x – 1 }{ 2 }\) = \(\frac { x – 2 }{ 3 }\)
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 17

Question 12.
\(\frac { 5x }{ 3 }\) – \(\frac { x – 1 }{ 4 }\) = \(\frac { x – 3 }{ 5 }\)
Solution:
\(\frac { 5x }{ 3 }\) – \(\frac { x – 1 }{ 4 }\) = \(\frac { x – 3 }{ 5 }\)
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 18
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 19

Question 13.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 20
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 21
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 22

Question 14.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 23
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 24
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 25

Question 15.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 26
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 27
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 28

Question 16.
0.18 (5x – 4) = 0.5x + 0.8
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 29

Question 17.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 30
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 31
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 32

Question 18.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 33
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 34
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 35

Question 19.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 36
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 37
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 38

Question 20.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 39
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 40
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 41

Question 21.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 42
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 43
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 44
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 45

Question 22.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 46
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 47
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 48
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 49

Question 23.
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 50
Solution:
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 51
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 52

Question 24.
(3x – 8) (3x + 2) – (4x – 11) (2x + 1) = (x – 3) (x + 7)
Solution:
(3x – 8) (3x + 2) – (4x – 11) (2x + 1) = (x – 3) (x + 7)
⇒ (9x² + 6x – 24x – 16) – (8x² + 4x – 22x – 11) = x² + 7x – 3x – 21
⇒ 9x² + 6x – 24x – 16 – 8x² – 4x + 22x + 11 = x² + 4x – 21
⇒ 9x² – 8x² – x² + 6x – 24x + 22x – 4x – 4x = -21 + 16 – 11
⇒ 28x – 32x = -32 + 16
⇒ -4x = -16
⇒ x = 4
Verification:
L.H.S. = (3x – 8) (3x + 2) – (4x – 11) (2x + 1)
= (3 x 4 – 8) (3 x 4 + 2) – (4 x 4 – 11) (2 x 4 + 1)
= (12 – 8) (12 + 2) – (16 – 11) (8 + 1)
= 4 x 14 – 5 x 9 = 56 – 45 = 11
R.H.S. = (x – 3) (x + 7) = (4 – 3) (4 + 7) = 1 x 11 = 11
L.H.S. = R.H.S.

Question 25.
[(2x + 3) + (x + 5)]² + [(2x + 3) – (x + 5)]² = 10x² + 92
Solution:
[(2x + 3) + (x + 5)]² + [(2x + 3) – (x + 5)]² = 10x² + 92
⇒ (2x + 3 + x + 5)² + (2x + 3 – x – 5)² = 10x² + 92
⇒ (3x + 8)² + (x – 2)² = 10x² + 92
⇒ 9x² + 2 x 3x x 8 + 64 + x² – 2 x x x 2 + 4 = 10x² + 92
⇒ 9x² + 48x + 64 + x² – 4x + 4 = 10x² + 92
⇒ 9x² + x² – 10x² + 48x – 4x = 92 – 64 – 4
⇒ 44x = 24
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 53
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 54
RD Sharma Class 8 Solutions Chapter 9 Linear Equations in One Variable Ex 9.2 55

Hope given RD Sharma Class 8 Solutions Linear Equations in One Variable Ex 9.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 7 Factorization Ex 7.2

RD Sharma Class 8 Solutions Chapter 7 Factorization Ex 7.2

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.2

Other Exercises

Factorize the following :

Question 1.
3x-9
Solution:
3x – 9 = 3 (x – 3)        (HCF of 3, 9 = 3)

Question 2.
5x – 15x2
Solution:
5x- 15x2 = 5x (1 – 3x)
{HCF of 5, 15 = 5 and of x, x2 = x}

Question 3.
20a12b2 – 15a8b4
Solution:
20a12b2 – 15a8b4
{HCF of 20, 15 = 5, a12, a8 = a8, b2, b4 = b2}
= 5ab2(4a4 – 3b2)

Question 4.
72xy – 96x7y6
Solution:
72xy – 96x7y6
HCF of 72, 96 = 24 of x6x7 = x6, y7,y6 = y6
∴ 72x7y6 – 96x7y6 = 24x6y6 (3y – 4x)

Question 5.
20X3 – 40x2 + 80x
Solution:
20x3 – 40x2 + 80x
HCF of 20, 40,80 = 20
HCF of x3, x2, x = x
∴ 20x3 – 40x2 + 80x = 20x (x2 – 2x + 4)

Question 6.
2x3y2 – 4x2y3 + 8xy4
Solution:
2x3y2 – 4x2y3 + 8xy4
HCF of 2, 4, 8 = 2
HCF of x3, x2, x = 1
and HCF of y2, y3, y4 = y2
∴ 2x3y2 – 4x2y3 + 8xy4
= 2xy2 (x2 – 2xy + 4y2)

Question 7.
10m3n2 + 15m4n – 20m2n3
Solution:
10m3n2 + 15m4n – 20m2n3
HCF of 10, 15, 20 = 5
HCF of m3, m4, m2 = m2
HCF of n2, n, n3 = n
10m3n2 + 15m4n – 20m2n3
5m2n(2mn + 3m2– 4n2)

Question 8.
2a4b4 – 3a3b5 + 4a2b5
Solution:
2a4b4 – 3a3b5 + 4a2b5
HCF of 2, 3, 4= 1
HCF of a4, a3,
a2 = a2
HCF of b4, b5 b5 = b4
∴ 2a4b4 – 3a3b5 + 4a2b5 = a2b4
(2a2 – 3ab
+ 4b)

Question 9.
28a2 + 14a2b2 – 21a4
Solution:
28a2 + 14a2b2 – 21a4
HCF of 28, 14,21 =7
HCF of a2, a2, a4 = a2
HCF of 1, b2, 1 = 1
28a2 + 14a2b2-21a4 = 7a2
(4 + 2b2 – 3a2)

Question 10.
a4b – 3a2b2 – 6ab3
Solution:
a4b – 3a2b2 – 6ab3
HCF of 1,3,6 = 1
HCF of a4, a2, a = a
HCF of b, b2, b3 = b
∴ a4b – 3a2b2 – 6ab3 = ab (a3 – 3ab – 6b2)

Question 11.
2l2mn – 3lm2n + 4lmn2
Solution:
2l2mn – 3lm2n + 4lmn2
HCF 2, 3,4 = 1,
HCF of l2,l,l = l
HCF of m, m2, m = m
HCF of n, n, n2 = n
∴ 2lmn – 3lm2n + 4lmn2
= lmn (21 -3m + 4n)

Question 12.
x4y2 – x2y4 – x4y4
Solution:
x4y2 – x2y4 – x4y4
HCF of x4, x2, x4 = x2
HCF of y2, y4, y4 =y2
∴ x4y2 – x2y4 – x4y4 = x2y2 (x-y2 -x2y2)

Question 13.
9 x2y + 3 axy
Solution:
9 x2y + 3 axy
HCF of 9, 3 = 3
HCF of x2, x = x
HCF of y,y = y
HCF of 1,a = 1
∴ 9x2y + 3axy = 3xy (3x + a)

Question 14.
16m – 4m2
Solution:
16m – 4m2
HCF of 16, 4 = 4
HCF of m, m2 = m
∴ 16m – 4m2 = 4m (4 – m)

Question 15.
-4a2 + 4ab – 4ca
Solution:
-4a2 + 4ab – 4ca
HCF of 4, 4, 4 = 4
HCF of a2, a, a = a
∴ -4a2 + 4ab – 4ca = -4a (a – b + c)

Question 16.
x2yz + xy2z + xyz2
Solution:
x2yz + xy2z + xyz2
HCF of x2, x, x = x
HCF of y,y2,y=y
HCF of z, z,z2 = z
∴ x2yz + xy2z + xyz2 = xyz (x + y + z)

Question 17.
ax2y + bxy2 + cxyz
Solution:
ax2y + bxy2 + cxyz
HCF of x2, x, x = x,
HCF of y,y2,y = y
ax2y + bxy2 + cxyz = xy (ax + by + cz)

Hope given RD Sharma Class 8 Solutions Chapter 7 Factorizations Ex 7.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.