RS Aggarwal Class 6 Solutions Chapter 18 Circles Ex 18

RS Aggarwal Class 6 Solutions Chapter 18 Circles Ex 18

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 18 Circles Ex 18

Question 1.
Solution:
Method :
RS Aggarwal Class 6 Solutions Chapter 18 Circles Ex 18 Q1.1
Take a point O on the paper as shown in the figure. With the help of the rular, open out compasses in such a way that the distance between the metal point and pencil point is 4 cm. Take the compasses in the same position and put its metal point at O and draw the circle.
Remove the compasses and again open out the compasses in such a way that the distance between the metal point and pencil point is 5.3 cm. Taking O as the centre, draw another circle. Again remove the compasses and similarly draw the third circle with radius 6.2 cm. Then the required circles are as shown in the figure which have radius OA = 4 cm., OB = 5.3 cm. and OC = 6.2 cm.

Question 2.
Solution:
Method : Take a point C on the paper. With the help of the rular, open out the compasses in such a way that the distance between its metal point and pencil point is 4.5 cm. Take the compasses in the same position and put its metal point at C and draw the circle. Mark points P, Q and R as shown in the figure as required.
RS Aggarwal Class 6 Solutions Chapter 18 Circles Ex 18 Q2.1

Question 3.
Solution:
Method : Take a point O on the paper. With the help of the rular, open out the compasses in such a way that the distance between the metal point and pencil point is 4 cm. Take the compasses in the same position and put the metal point at O and draw the circle.
RS Aggarwal Class 6 Solutions Chapter 18 Circles Ex 18 Q3.1
Take A and B any points on the circle and join AB. ThenAB is the chord of the circle. Mark points X and Y on the circle as shown. Then arc AXB and arc AYB are the required minor and major arcs respectively.

Question 4.
Solution:
(i) False
(ii) True
(iii) False
(iv) False
(v) True.

Question 5.
Solution:
Steps of construction :
(i) With centre O and radius 3.7 cm, draw a circle.
(ii) Take a point A on the circumference of the circle.
(iii) Join OA.
(iv) At O, draw another radius OB such that ∠AOB = 72° with the help of protractor. Then sector AOB is the required one.
RS Aggarwal Class 6 Solutions Chapter 18 Circles Ex 18 Q5.1

Question 6.
Solution:
(i) > (ii) < (iii) > (iv) >. Ans.

Question 7.
Solution:
(i) Passes through
(ii) at the centre, on the circle
(iii) chord
(iv) arc
(v) sector.

 

Hope given RS Aggarwal Solutions Class 6 Chapter 18 Circles Ex 18 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 6 Solutions Chapter 17 Quadrilaterals Ex 17B

RS Aggarwal Class 6 Solutions Chapter 17 Quadrilaterals Ex 17B

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 17 Quadrilaterals Ex 17B

Other Exercises

Objective questions
Mark against the correct answer in each of the following :

Question 1.
Solution:
(c) ∵ Sum of angles of a quadrilateral is 360°.

Question 2.
Solution:
Sum of 4 angles of a quadrilateral = 360° and three angles of a quadrilateral are 80°, 70° and 120°
∵ Fourth angle = 360° – (80° + 70° + 120°)
= 360° – 270° – 90° (c)

Question 3.
Solution:
Sum of angles of a quadrilateral = 360°
The ratio in there four angles is 3 : 4 : 5 : 6
RS Aggarwal Class 6 Solutions Chapter 17 Quadrilaterals Ex 17B Q3.1

Question 4.
Solution:
(d) Y Quadrilateral having one pair of parallel sides is a trapezium.

Question 5.
Solution:
(d) ∵ Quadrilateral having opposite sides parallel is called a parallelogram.

Question 6.
Solution:
(b) ∵ A trapezium having nonparallel sides equal is called an isosceles trapezium.

Question 7.
Solution:
(b) ∵ Diagonals of a rhombus bisect each other at right angles.

Question 8.
Solution:
(b) ∵ A square has four equal sides and also diagonals are equal.

Question 9.
Solution:
A quadrilateral having two pairs of equal adjacent sides but unequal opposite angles is called a kite. (c)

Question 10.
Solution:
A regular quadrilateral is a quadrilateral having equal sides and equal angles which is a square. (c)

Hope given RS Aggarwal Solutions Class 6 Chapter 17 Quadrilaterals Ex 17B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5F.

Other Exercises

Find the difference:

Question 1.
Solution:
\(\frac { 5 }{ 8 } -\frac { 1 }{ 8 } \)
= \(\\ \frac { 5-1 }{ 8 } \)
= \(\frac { 4 }{ 8 } \)
= \(\frac { 4\div 4 }{ 8\div 4 } \)
= \(\frac { 1 }{ 2 } \)

Question 2.
Solution:
\(\frac { 7 }{ 12 } -\frac { 5 }{ 12 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 2.1

Question 3.
Solution:
\(4\frac { 3 }{ 7 } -2\frac { 4 }{ 7 } \)
= \(\frac { 31 }{ 7 } -\frac { 18 }{ 7 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 3.1

Question 4.
Solution:
\(\frac { 5 }{ 6 } -\frac { 4 }{ 9 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 4.1

Question 5.
Solution:
\(\frac { 1 }{ 2 } -\frac { 3 }{ 8 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 5.1

Question 6.
Solution:
\(\frac { 5 }{ 8 } -\frac { 7 }{ 12 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 6.1

Question 7.
Solution:
\(2\frac { 7 }{ 9 } -1\frac { 8 }{ 15 } \)
= \(\frac { 25 }{ 9 } -\frac { 23 }{ 15 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 7.1

Question 8.
Solution:
\(3\frac { 5 }{ 8 } -2\frac { 5 }{ 12 } \)
= \(\frac { 29 }{ 8 } -\frac { 29 }{ 12 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 8.1

Question 9.
Solution:
\(2\frac { 3 }{ 10 } -1\frac { 7 }{ 15 } \)
= \(\frac { 23 }{ 10 } -\frac { 22 }{ 15 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 9.1

Question 10.
Solution:
\(6\frac { 2 }{ 3 } -3\frac { 3 }{ 4 } \)
= \(\frac { 20 }{ 3 } -\frac { 15 }{ 4 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 10.1

Question 11.
Solution:
\(7-5\frac { 2 }{ 3 } \)
= \(\frac { 7 }{ 1 } -\frac { 17 }{ 3 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 11.1

Question 12.
Solution:
\(10-6\frac { 3 }{ 8 } \)
= \(\frac { 10 }{ 1 } -\frac { 51 }{ 8 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 12.1

Simpilify

Question 13.
Solution:
\(\frac { 5 }{ 6 } -\frac { 4 }{ 9 } +\frac { 2 }{ 3 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 13.1

Question 14.
Solution:
\(\frac { 5 }{ 8 } +\frac { 3 }{ 4 } -\frac { 7 }{ 12 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 14.1

Question 15.
Solution:
\(2+\frac { 11 }{ 15 } -\frac { 5 }{ 9 } \)
= \(\frac { 90+33-25 }{ 45 } \)
(LCM of 15 and 9 = 45)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 15.1

Question 16.
Solution:
\(5\frac { 3 }{ 4 } -4\frac { 5 }{ 12 } +3\frac { 1 }{ 6 } \)
= \(\frac { 23 }{ 4 } -\frac { 53 }{ 12 } +\frac { 19 }{ 6 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 16.1

Question 17.
Solution:
\(2+5\frac { 7 }{ 10 } -3\frac { 14 }{ 15 } \)
= \(\frac { 2 }{ 1 } +\frac { 57 }{ 10 } -\frac { 59 }{ 15 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 17.1

Question 18.
Solution:
\(8-3\frac { 1 }{ 2 } -2\frac { 1 }{ 4 } \)
= \(\frac { 8 }{ 1 } -\frac { 7 }{ 2 } -\frac { 9 }{ 4 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 18.1

Question 19.
Solution:
\(8\frac { 5 }{ 6 } -3\frac { 3 }{ 8 } +2\frac { 7 }{ 12 } \)
= \(\frac { 53 }{ 6 } -\frac { 27 }{ 8 } +\frac { 31 }{ 12 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 19.1

Question 20.
Solution:
\(6\frac { 1 }{ 6 } -5\frac { 1 }{ 5 } +3\frac { 1 }{ 3 } \)
= \(\frac { 37 }{ 6 } -\frac { 26 }{ 5 } +\frac { 10 }{ 3 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 20.1

Question 21.
Solution:
\(3+1\frac { 1 }{ 5 } +\frac { 2 }{ 3 } -\frac { 7 }{ 15 } \)
= \(\frac { 3 }{ 1 } +\frac { 6 }{ 5 } +\frac { 2 }{ 3 } -\frac { 7 }{ 15 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 21.1

Question 22.
Solution:
By subtracting \(9 \frac { 2 }{ 3 } \) from 19, we get the required number
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 22.1

Question 23.
Solution:
By subtracting \(6 \frac { 7 }{ 15 } \) from \(8 \frac { 1 }{ 5 } \) we get the required number
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 23.1

Question 24.
Solution:
Sum of \(3 \frac { 5 }{ 9 } \) and \(3 \frac { 1 }{ 3 } \)
= \(\frac { 32 }{ 9 } +\frac { 10 }{ 3 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 24.1

Question 25.
Solution:
\(\\ \frac { 3 }{ 4 } \), \(\\ \frac { 5 }{ 7 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 25.1

Question 26.
Solution:
Milk bought by Mrs. Soni = \(7 \frac { 1 }{ 2 } \) litres
and milk consumed by here = \(5 \frac { 3 }{ 4 } \) litres
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 26.1

Question 27.
Solution:
Total time of film show = \(3 \frac { 1 }{ 3 } \) hours
Total spent on advertisement = \(1 \frac { 3 }{ 4 } \) hours
Duration of the film
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 27.1

Question 28.
Solution:
On a day, rickshaw pullar earned
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 28.1

Question 29.
Solution:
Total length of wire =\(2 \frac { 3 }{ 4 } \)-metres
Length of one piece = \(\\ \frac { 5 }{ 8 } \) metre
Length of the other piece
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5F 29.1

Hope given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5F are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5E.

Other Exercises

Find the sum :

Question 1.
Solution:
\(\frac { 5 }{ 8 } +\frac { 1 }{ 8 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 1.1

Question 2.
Solution:
\(\frac { 4 }{ 9 } +\frac { 8 }{ 9 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 2.1

Question 3.
Solution:
\(1\frac { 3 }{ 5 } +2\frac { 4 }{ 5 } \)
\(\frac { 8 }{ 5 } +\frac { 14 }{ 5 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 3.1

Question 4.
Solution:
\(\frac { 2 }{ 5 } +\frac { 5 }{ 6 } \)
= \(\\ \frac { 4+15 }{ 18 } \) (LCM of 9 and 6 = 18)
= \(\\ \frac { 19 }{ 18 } \)
= \(1 \frac { 1 }{ 18 } \)

Question 5.
Solution:
\(\frac { 7 }{ 12 } +\frac { 9 }{ 16 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 5.1

Question 6.
Solution:
\(\frac { 4 }{ 15 } +\frac { 17 }{ 20 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 6.1

Question 7.
Solution:
\(2\frac { 3 }{ 4 } +5\frac { 5 }{ 6 } \)
= \(\frac { 11 }{ 4 } +\frac { 35 }{ 6 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 7.1

Question 8.
Solution:
\(3\frac { 1 }{ 8 } +1\frac { 5 }{ 12 } \)
= \(\frac { 25 }{ 8 } +\frac { 17 }{ 12 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 8.1

Question 9.
Solution:
\(2\frac { 7 }{ 10 } +3\frac { 8 }{ 15 } \)
= \(\frac { 27 }{ 10 } +\frac { 53 }{ 15 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 9.1

Question 10.
Solution:
\(3\frac { 2 }{ 3 } +1\frac { 5 }{ 6 } +2 \)
\(\frac { 11 }{ 3 } +\frac { 11 }{ 6 } +\frac { 2 }{ 1 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 10.1

Question 11.
Solution:
\(3+1\frac { 4 }{ 15 } +1\frac { 3 }{ 20 } \)
=\(\frac { 3 }{ 1 } +\frac { 19 }{ 15 } +\frac { 23 }{ 20 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 11.1

Question 12.
Solution:
\( 3\frac { 1 }{ 3 } +4\frac { 1 }{ 4 } +6\frac { 1 }{ 6 } \)
\(\frac { 10 }{ 3 } +\frac { 17 }{ 4 } +\frac { 37 }{ 6 } \)
(changing into improper fractions)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 12.1

Question 13.
Solution:
\(\frac { 2 }{ 3 } +3\frac { 1 }{ 6 } +4\frac { 2 }{ 9 } +2\frac { 5 }{ 18 } \)
\(\frac { 2 }{ 3 } +\frac { 19 }{ 6 } +\frac { 38 }{ 9 } +\frac { 41 }{ 18 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 13.1

Question 14.
Solution:
\(2\frac { 1 }{ 3 } +1\frac { 1 }{ 4 } +2\frac { 5 }{ 6 } +3\frac { 7 }{ 12 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 14.1

Question 15.
Solution:
\(2+\frac { 3 }{ 4 } +1\frac { 5 }{ 6 } +3\frac { 7 }{ 16 } \)
\(\frac { 2 }{ 1 } +\frac { 3 }{ 4 } +\frac { 13 }{ 8 } +\frac { 55 }{ 16 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 15.1

Question 16.
Solution:
Cost of a pencil = Rs. \(3 \frac { 2 }{ 5 } \)
Cost of an eraser = Rs.\(2 \frac { 7 }{ 10 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 16.1

Question 17.
Solution:
Length of cloth for kurta = \(4 \frac { 1 }{ 2 } \) metres
Length of cloth for pyjamas = \(2 \frac { 2 }{ 3 } \) metres
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 17.1

Question 18.
Solution:
Distance travelled by Rickshaw = \(4 \frac { 3 }{ 4 } \) km
Distance travelled on foot = \(1 \frac { 1 }{ 2 } \) km
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 18.1

Question 19.
Solution:
Weight of empty cylinder = \(16 \frac { 4 }{ 5 } \) kg
Weight of gas filled in it = \(14 \frac { 2 }{ 3 } \) kg
Total. weight of cylinder with gas
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5E 19.1

Hope given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5E are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5D.

Other Exercises

Question 1.
Solution:
(i) Like fraction : Fractions having the same denominators are called like fractions. For examples:
\(\frac { 2 }{ 11 } ,\frac { 3 }{ 11 } ,\frac { 4 }{ 11 } ,\frac { 5 }{ 11 } ,\frac { 8 }{ 11 } \)
(ii) Unlike fraction : Fraction having the different denominators, are called unlike fractions. For examples:
\(\frac { 1 }{ 3 } ,\frac { 4 }{ 7 } ,\frac { 5 }{ 9 } ,\frac { 3 }{ 8 } ,\frac { 7 }{ 11 } \)

Question 2.
Solution:
We know that like fractions have same denominator
Now \(\frac { 3 }{ 5 } ,\frac { 7 }{ 10 } ,\frac { 8 }{ 15 } ,\frac { 11 }{ 30 } \)
LCM of 5, 10, 15 and 30 = 30
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 2.1

Question 3.
Solution:
We know that like fraction have same denominators
\(\frac { 1 }{ 4 } ,\frac { 5 }{ 8 } ,\frac { 7 }{ 12 } ,\frac { 13 }{ 24 } \)
LCM of 4, 8, 12, 24 = 24
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 3.1

Question 4.
Solution:
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 4.1
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 4.2

Question 5.
Solution:
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 5.1
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 5.2

Compare the fractions given below :

Question 6.
Solution:
\(\frac { 4 }{ 5 } and\frac { 5 }{ 7 } \)
LCM of 5 and 7 = 35
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 6.1

Question 7.
Solution:
\(\frac { 3 }{ 8 } and\frac { 5 }{ 6 } \)
LCM of 8 and 6 = 24
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 7.1

Question 8.
Solution:
\(\frac { 7 }{ 11 } and\frac { 6 }{ 7 } \)
LCM of 11 and 7 = 77
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 8.1

Question 9.
Solution:
\(\frac { 5 }{ 6 } and\frac { 9 }{ 11 } \)
LCM of 6 and 11 = 66
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 9.1

Question 10.
Solution:
\(\frac { 2 }{ 3 } and\frac { 4 }{ 9 } \)
LCM of 3 and 9 = 9
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 10.1

Question 11.
Solution:
\(\frac { 6 }{ 13 } and\frac { 3 }{ 4 } \)
LCM of 13 and 4 = 52
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 11.1

Question 12.
Solution:
\(\frac { 3 }{ 4 } and\frac { 5 }{ 6 } \)
LCM of 4 and 6 = 12
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 12.1

Question 13.
Solution:
\(\frac { 5 }{ 8 } and\frac { 7 }{ 12 } \)
LCM of 8 and 12 = 24
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 13.1

Question 14.
Solution:
\(\frac { 4 }{ 9 } and\frac { 5 }{ 6 } \)
LCM of 9 and 6 = 18
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 14.1

Question 15.
Solution:
\(\frac { 4 }{ 5 } and\frac { 7 }{ 10 } \)
LCM of 5 and 10 = 10
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 15.1

Question 16.
Solution:
\(\frac { 7 }{ 8 } and\frac { 9 }{ 10 } \)
LCM of 8 and 10 = 40
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 16.1

Question 17.
Solution:
\(\frac { 11 }{ 12 } and\frac { 13 }{ 15 } \)
LCM of 12 and 15 = 60
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 17.1

Question 18.
Solution:
\(\frac { 1 }{ 2 } ,\frac { 3 }{ 4 } ,\frac { 5 }{ 6 } and\frac { 7 }{ 8 } \)
LCM of 2, 4, 6 and 8 = 24
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 18.1

Question 19.
Solution:
\(\frac { 2 }{ 3 } ,\frac { 5 }{ 6 } ,\frac { 7 }{ 9 } and\frac { 11 }{ 18 } \)
LCM of 3, 6, 9 and 18 = 18
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 19.1

Question 20.
Solution:
\(\frac { 2 }{ 5 } ,\frac { 7 }{ 10 } ,\frac { 11 }{ 15 } and\frac { 17 }{ 30 } \)
LCM of 5, 10, 15 and 30 = 30
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 20.1

Question 21.
Solution:
\(\frac { 3 }{ 4 } ,\frac { 7 }{ 8 } ,\frac { 11 }{ 16 } and\frac { 23 }{ 32 } \)
LCM of 4, 8, 16 and 32 = 32
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 21.1

Arrange the following fractions in the descending order :

Question 22.
Solution:
\(\frac { 3 }{ 4 } ,\frac { 5 }{ 8 } ,\frac { 11 }{ 12 } and\frac { 17 }{ 24 } \)
LCM of 4, 8, 12 and 24 = 24
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 22.1

Question 23.
Solution:
\(\frac { 7 }{ 9 } ,\frac { 5 }{ 12 } ,\frac { 11 }{ 18 } and\frac { 17 }{ 36 } \)
LCM of 9, 12, 18 and 36 = 36
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 23.1

Question 24.
Solution:
\(\frac { 2 }{ 3 } ,\frac { 3 }{ 5 } ,\frac { 7 }{ 10 } and\frac { 8 }{ 15 } \)
LCM of 3, 5, 10 and 15 = 30
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 24.1

Question 25.
Solution:
\(\frac { 5 }{ 7 } ,\frac { 9 }{ 14 } ,\frac { 17 }{ 21 } and\frac { 31 }{ 42 } \)
LCM of 7, 14, 21 and 42 = 42
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5D 25.1

Question 26.
Solution:
∴ the numerators are equal
∴ The fraction having small denominator is greater than the fraction having large denominator
∴ In descending order, we can write
\(\frac { 1 }{ 12 } ,\frac { 1 }{ 23 } ,\frac { 1 }{ 7 } ,\frac { 1 }{ 9 } ,\frac { 1 }{ 17 } ,\frac { 1 }{ 50 } \)

Question 27.
Solution:
Here, the numerators of all fractions are equal
∴ The fraction having small denominator is greater than the fraction having large denominator
Now in descending order is
\(\frac { 3 }{ 4 } ,\frac { 3 }{ 5 } ,\frac { 3 }{ 7 } ,\frac { 3 }{ 11 } ,\frac { 3 }{ 13 } ,\frac { 3 }{ 17 } \)

Question 28.
Solution:
Lalita read 30 pages of a book containing 100 pages
She read \(\\ \frac { 30 }{ 100 } \) = \(\\ \frac { 3 }{ 10 } \) part of the book and Sarita read \(\\ \frac { 2 }{ 5 } \) of the book
Now in \(\\ \frac { 3 }{ 10 } \) and \(\\ \frac { 2 }{ 5 } \), LCM of 10, 5 = 10
\(\\ \frac { 3 }{ 10 } \) = \(\\ \frac { 3 }{ 10 } \)
\(\\ \frac { 2 }{ 5 } \) = \(\\ \frac { 2\times 2 }{ 5\times 2 } \) = \(\\ \frac { 4 }{ 10 } \)
From above, Sarita read more
as \(\\ \frac { 4 }{ 10 } \) or \(\frac { 2 }{ 5 } >\frac { 3 }{ 10 } \)

Question 29.
Solution:
Rafiq exercised for \(\\ \frac { 2 }{ 3 } \) hour and Rohit exercised for \(\\ \frac { 3 }{ 4 } \) hour
In \(\\ \frac { 2 }{ 3 } \) and \(\\ \frac { 3 }{ 4 } \), LCM of 3 and 4 = 12
\(\\ \frac { 2 }{ 3 } \) = \(\\ \frac { 2\times 4 }{ 3\times 4 } \) = \(\\ \frac { 8 }{ 12 } \)
\(\\ \frac { 3 }{ 4 } \) = \(\\ \frac { 3\times 3 }{ 4\times 3 } \) = \(\\ \frac { 9 }{ 12 } \)
\(\frac { 9 }{ 12 } >\frac { 8 }{ 12 } \)
=> \(\frac { 3 }{ 4 } >\frac { 2 }{ 3 } \)
∴ Rohit exercised more time

Question 30.
Solution:
In VI A, 20 student passed out of 25 or \(\\ \frac { 20 }{ 25 } \) or \(\\ \frac { 4 }{ 5 } \) students passed
But in VI B, 24 out of 30 passed 24 or \(\\ \frac { 24 }{ 30 } \) or \(\\ \frac { 4 }{ 5 } \) students passed
Now \(\\ \frac { 4 }{ 5 } \) = \(\\ \frac { 4 }{ 5 } \)
∴ Both sections gave same result

Hope given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5D are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.