RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3

Other Exercises

Question 1.
Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.
Solution:
Steps of construction :
(i)
Draw a circle with O centre and 6 cm radius.
(ii) Take a point P, 10 cm away from the centre O.
(iii) Join PO and bisect it at M.
(iv) With centre M and diameter PO, draw a circle intersecting the given circle at T and S.
(v) Join PT and PS.
Then PT and PS are the required tangents.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3 1

Question 2.
Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q.
Solution:
Steps of construction :
(i)
Draw a circle with centre O and radius 3 cm.
(ii) Draw a diameter and produce it to both sides.
(iii) Take two points P and Q on this diameter with a distance of 7 cm each from the centre O.
(iv) Bisect PO at M and QO at N
(v) With centres M and N, draw circle on PO and QO as diameter which intersect the given circle at S, T and S’, T’ respectively.
(vi) Join PS, PT, QS’ and QT’.
Then PS, PT, QS’ and QT’ are the required tangents to the given circle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3 2

Question 3.
Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle. [CBSE 2013]
Solution:
Steps of construction :
(i)
Draw a line segment AB = 8 cm.
(ii) With centre A and radius 4 cm and with centre B and radius 3 cm, circles are drawn.
(iii) Bisect AB at M.
(iv) With centre M and diameter AB, draw a circle which intersects the two circles at S’, T’ and S, T respectively.
(v) Join AS, AT, BS’and BT’.
Then AS, AT, BS’ and BT’ are the required tangent.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3 3

Question 4.
Draw two tangents to a circle of raidus 3.5 cm from a point P at a distance of 6.2 cm from its centre.
Solution:
Steps of construction :
(i) Draw a circle with centre O and radius 3.5 cm
(ii) Take a point P which is 6.2 cm from O.
(iii) Bisect PO at M and draw a circle with centre M and diameter OP which intersects the given circle at T and S respectively.
(iv) Join PT and PS.
PT and PS are the required tangents to circle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3 4

Question 5.
Draw a pair of tangents to a circle of radius 4.5 cm, which are inclined to each other at an angle of 45°.            [CBSE 2013]
Solution:
Steps of construction :
Angle at the centre 180° – 45° = 135°
(i) Draw a circle with centre O and radius 4.5 cm.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3 5
(ii) At O, draw an angle ∠TOS = 135°
(iii) At T and S draw perpendicular which meet each other at P.
PT and PS are the tangents which inclined each other 45°.

Question 6.
Draw a right triangle ABC in which AB = 6 cm, BC = 8 cm and ∠B = 90°. Draw BD perpendicular from B on AC and draw a circle passing through the points B, C and D. Construct tangents from A to this circle.
Solution:
Steps of Construction :
Draw a line segment BC = 8 cm
From B draw an angle of 90°
Draw an arc \(\breve { BA }\)  = 6cm cutting the angle at A.
Join AC.
ΔABC is the required A.
Draw ⊥ bisector of BC cutting BC at M.
Take M as centre and BM as radius, draw a circle.
Take A as centre and AB as radius draw an arc cutting the circle at E. Join AE.
AB and AE are the required tangents.
Justification :
∠ABC = 90°                                            (Given)
Since, OB is a radius of the circle.
∴ AB is a tangent to the circle.
Also AE is a tangent to the circle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3 6

Question 7.
Draw two concentric circles of radii 3 cm and 5 cm. Construct a tangent to the smaller circle from a point on the larger circle. Also, measure its length.                      [CBSE 2016]
Solution:
Given, two concentric circles of radii 3 cm and 5 cm with centre O. We have to draw pair of tangents from point P on outer circle to the other.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3 7
Steps of construction :       
(i) Draw two concentric circles with centre O and radii 3 cm and 5 cm.
(ii) Taking any point P on outer circle. Join OP.
(iii) Bisect OP, let M’ be the mid-point of OP.
Taking M’ as centre and OM’ as radius draw a circle dotted which cuts the inner circle as M and P’.
(iv) Join PM and PP’. Thus, PM and PP’ are the required tangents.
(v) On measuring PM and PP’, we find that PM = PP’ = 4 cm.
Actual calculation:
In right angle ΔOMP, ∠PMO = 90°
∴ PM2 = OP2 – OM2
[by Pythagoras theorem i.e. (hypotenuse)2 = (base)2 + (perpendicular)2]
⇒ PM2 = (5)2 – (3)2 = 25 – 9 = 16
⇒ PM = 4 cm
Hence, the length of both tangents is 4 cm.

Hope given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2

Other Exercises

Question 1.
Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are (2/3) of the corresponding sides of it.
Solution:
Steps of construction :
(i)
Draw a line segment BC = 5 cm.
(ii) With centre B and radius 4 cm and with centre C and radius 6 cm, draw arcs intersecting each other at A.
(iii) Join AB and AC. Then ABC is the triangle.
(iv) Draw a ray BX making an acute angle with BC and cut off 3 equal parts making BB1 = B1B2= B2B3.
(v) Join B3C.
(vi) Draw B’C’ parallel to B3C and C’A’ parallel to CA then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 1

Question 2.
Construct a triangle similar to a given ΔABC such that each of its sides is (5/7)th of the corresponding sides of ΔABC. It is given that AB = 5 cm, BC = 7 cm and ∠ABC = 50°.
Solution:
Steps of construction :
(i) Draw a line segment BC = 7 cm.
(ii) Draw a ray BX making an angle of 50° and cut off BA = 5 cm.
(iii) Join AC. Then ABC is the triangle.
(iv) Draw a ray BY making an acute angle with BC and cut off 7 equal parts making BB, =B1B2=B2B3=B3B4=B4Bs=B5B6=B6B7
(v) Join B7 and C
(vi) Draw B5C’ parallel to B7C and C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 2

Question 3.
Construct a triangle similar to a given ∠ABC such that each of its sides is \(\frac { 2 }{ 3 }\)rd of the corresponding sides of ΔABC. It is given that BC = 6 cm, ∠B = 50° and ∠C = 60°.
Solution:
Steps of construction :
(i) Draw a line segment BC = 6 cm.
(ii) Draw a ray BX making an angle of 50° and CY making 60° with BC which intersect each other at A. Then ABC is the triangle.
(iii) From B, draw another ray BZ making an acute angle below BC and intersect 3 equal parts making BB1 =B1B2 = B2B2
(iv) Join B3C.
(v) From B2, draw B2C’ parallel to B3C and C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 3

Question 4.
Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to \(\frac { 3 }{ 4 }\)th of the corresponding sides of ΔABC.
Solution:
Steps of construction :
(i)
Draw a line segment BC = 6 cm.
(ii) With centre B and radius 4 cm and with centre C and radius 5 cm, draw arcs’intersecting eachother at A.
(iii) Join AB and AC. Then ABC is the triangle,
(iv) Draw a ray BX making an acute angle with BC and cut off 4 equal parts making BB1=  B1B= B2B3 = B3B4.
(v) Join B4 and C.
(vi) From B3C draw C3C’ parallel to B4C and from C’, draw C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 4

Question 5.
Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are \(\frac { 7 }{ 5 }\) of the corresponding sides of the first triangle.
Solution:
Steps of construction :
(i) Draw a line segment BC = 5 cm.
(ii) With centre B and radius 6 cm and with centre C and radius 7 cm, draw arcs intersecting eachother at A.
(iii) Join AB and AC. Then ABC is the triangle.
(iv) Draw a ray BX making an acute angle with BC and cut off 7 equal parts making BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7.
(v) Join B5 and C.
(vi) From B7, draw B7C’ parallel to B5C and C’A’ parallel CA. Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 5

Question 6.
Draw a right triangle ABC in which AC = AB = 4.5 cm and ∠A = 90°. Draw a triangle similar to ΔABC with its sides equal to (\(\frac { 5 }{ 4 }\))th ot the corresponding sides of ΔABC.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 4.5 cm.
(ii) At A, draw a ray AX perpendicular to AB and cut off AC = AB = 4.5 cm.
(iii) Join BC. Then ABC is the triangle.
(iv) Draw a ray AY making an acute angle with AB and cut off 5 equal parts making AA1 = A1A2 = A2A3 =A3A4 = A4A5
(v) Join A4 and B.
(vi) From 45, draw 45B’ parallel to  A4B and  B’C’ parallel to BC.
Then ΔAB’C’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 6

Question 7.
Draw a right triangle in which the sides (other than hypotenuse) are of lengths 5 cm and 4 cm. Then construct another triangle whose sides are \(\frac { 5 }{ 3 }\) times the corresponding sides of the given triangle.  (C.B.S.E. 2008)
Solution:
Steps of construction :
(i)
Draw a line segment BC = 5 cm.
(ii) At B, draw perpendicular BX and cut off BA = 4 cm.
(iii )join Ac , then ABC is the triangle
(iv) Draw a ray BY making an acute angle with BC, and cut off 5 equal parts making BB1 = B1B2 = B2B3 = B3B4 = B4B5
(v) Join B3 and C.
(vi) From B5, draw B5C’ parallel to B3C and C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 7

Question 8.
Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are \(\frac { 3 }{ 2 }\) times the corresponding sides of the isosceles triangle.
Solution:
Steps of construction :
(i) Draw a line segment BC = 8 cm and draw its perpendicular bisector DX and cut off DA = 4 cm.
(ii) Join AB and AC. Then ABC is the triangle.
(iii) Draw a ray DY making an acute angle with OA and cut off 3 equal parts making DD1 = D1D2 =D2D3 = D3D4
(iv) Join D2
(v) Draw D3A’ parallel to D2A and A’B’ parallel to AB meeting BC at C’ and B’ respectively.
Then ΔB’A’C’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 8

Question 9.
Draw a ΔABC with side BC = 6 cm, AB = 5 cm and ∠ABC = 60°. Then construct a trianglewhose sides are \((\frac { 3 }{ 4 } )\)th of the corresponding sides of the ΔABC.
Solution:
Steps of construction :
(i)
Draw a line segment BC = 6 cm.
(ii) At B, draw a ray BX making an angle of 60° with BC and cut off BA = 5 cm.
(iii) Join AC. Then ABC is the triangle.
(iv) Draw a ray BY making an acute angle with BC and cut off 4 equal parts making BB1= B1B2  B2B3=B3B4.
(v) Join B4 and C.
(vi) From B3, draw B3C’ parallel to B4C and C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 9

Question 10.
Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm,∠A = 60° with scale factor 4 : 5.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 4.6 cm.
(ii) At A, draw a ray AX making an angle of 60°.
(iii) With centre B and radius 5.1 cm draw an arc intersecting AX at C.
(iv) Join BC. Then ABC is the triangle.
(v) From A, draw a ray AX making an acute angle with AB and cut off 5 equal parts making AA1 = A1A2 = A2A3 = A3A4=A4A5.
(vi) Join A4 and B.
(vii) From A5, drawA5B’ parallel to A4B and B’C’ parallel to BC.
Then ΔC’AB’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 10

Question 11.
Construct a triangle similar to a given ΔXYZ with its sides equal to \((\frac { 3 }{ 2 })\) th of the corresponding sides of ΔXYZ. Write the steps of construction.                      [CBSE 1995C]
Solution:
Steps of construction :
(i)
Draw a triangle XYZ with some suitable data.
(ii) Draw a ray YL making an acute angle with XZ and cut off 5 equal parts making YY1= Y1Y2 = Y2Y3 = Y3Y4.
(iii) Join Y4 and Z.
(iv) From Y3, draw Y3Z’ parallel to Y4Z and Z’X’ parallel to ZX.
Then ΔX’YZ’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 11

Question 12.
Draw a right triangle in which sides (other than the hypotenuse) are of lengths 8 cm and 6 cm. Then construct another triangle whose sides are \(\frac { 3 }{ 4 }\) times the corresponding sides of the first triangle.
Solution:
(i) Draw right ΔABC right angle at B and BC = 8 cm and BA = 6 cm.
(ii) Draw a line BY making an a cut angle with BC and cut off 4 equal parts.
(iii) Join 4C and draw 3C’ || 4C and C’A’ parallel to CA.
The BC’A’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 12

Question 13.
Construct a triangle with sides 5 cm, 5.5 cm and 6.5 cm. Now construct another triangle, whose sides are 3/5 times the corresponding sides of the given triangle. [CBSE 2014]
Solution:
Steps of construction:
(i) Draw a line segment BC = 5.5 cm.
(ii) With centre B and radius 5 cm and with centre C and radius 6.5 cm, draw arcs which intersect each other at A
(iii) Join BA and CA.
ΔABC is the given triangle.
(iv) At B, draw a ray BX making an acute angle and cut off 5 equal parts from BX.
(v) Join C5 and draw 3D || 5C which meets BC at D.
From D, draw DE || CA which meets AB at E.
∴ ΔEBD is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 13

Question 14.
Construct a triangle PQR with side QR = 7 cm, PQ = 6 cm and ∠PQR = 60°. Then construct another triangle whose sides are 3/5 of the corresponding sides of ΔPQR. [CBSE 2014]
Solution:
Steps of construction:
(i)
Draw a line segment QR = 7 cm.
(ii) At Q draw a ray QX making an angle of 60° and cut of PQ = 6 cm. Join PR.
(iii) Draw a ray QY making an acute angle and cut off 5 equal parts.
(iv) Join 5, R and through 3, draw 3, S parallel to 5, R which meet QR at S.
(v) Through S, draw ST || RP meeting PQ at T.
∴ ΔQST is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 14

Question 15.
Draw a ΔABC in which base BC = 6 cm, AB = 5 cm and ∠ABC = 60°. Then construct another triangle whose sides are \(\frac { 3 }{ 4 }\) of the corresponding sides of ΔABC.    [CBSE 2017]
Solution:
Steps of construction:

  1. Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and ∠ABC = 60°.
  2.  Draw a ray BX, which makes an acute angle ∠CBX below the line BC.
  3. Locate four points B1, B2, B3and Bon BX such that BB1 = B1B2=B2B3 = B3B4.
  4. Join B4C and draw a line through B3 parallel to B4C intersecting BC to C’.
  5. Draw a line through C’ parallel to the line CA to intersect BA at A’.

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 15

Question 16.
Draw a right triangle in which the sides (other than the hypotenuse) arc of lengths 4 cm and 3 cm. Now, construct another triangle whose sides are \(\frac { 5 }{ 3 }\) times the corresponding sides of the given triangle. [CBSE 2017]
Solution:
Steps of construction:

  1. Draw a right triangle ABC in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. ∠B = 90°.
  2. Draw a line BX, which makes an acute angle ∠CBX below the line BC.
  3. Locate 5 points B1, B2, B3, B4 and B5 on BX such that BB1 = B1B2=B2B3=B3B4=B4B5.
  4. Join B3 to C and draw a line through B5 parallel to B3C, intersecting the extended line segment BC at C’.
  5. Draw a line through C’ parallel to CA intersecting the extended line segment BA at A’.

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 16
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 17

Question 17.
Construct a ΔABC in which AB = 5 cm, ∠B = 60°, altitude CD = 3 cm. Construct a ΔAQR similar to ΔABC such that side of ΔAQR is 1.5 times that of the corresponding sides of ΔACB.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 5 cm.
(ii) At A, draw a perpendicular and cut off AE = 3 cm.
(iii) From E, draw EF || AB.
(iv) From B, draw a ray making an angle of 60 meeting EF at C.
(v) Join CA. Then ABC is the triangle.
(vi) From A, draw a ray AX making an acute angle with AB and cut off 3 equal parts making A A1= A1A2 = A2A3.
(vii) Join A2 and B.
(viii) From A , draw A^B’ parallel to A2B and B’C’ parallel toBC.
Then ΔC’AB’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 18

Hope given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS

RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS

Other Exercises

Answer each of the following questions either in one word or one sentence or as per requirement of the questions :
Question 1.
In the figure, PA and PB are tangents to the circle drawn from an external point P. CD is a third tangent touching the circle at Q. If PB = 10 cm and CQ = 2 cm, what is the length PC ?
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 1
Solution:
In the figure, PA and PB are the tangents to the circle drawn from P
CD is the third tangent to the circle drawn at Q
PB = 10 cm, CQ = 2 cm
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 2
PA and PB are tangents to the circle
PA = PB = 10 cm
Similarly CQ and CA are tangents to the circle
CQ = CA = 2 cm
PC = PA – CA = 10 – 2 = 8 cm

Question 2.
What is the distance between two parallel tangents of a circle of radius 4 cm ?
Solution:
TT’ and SS’ are two tangents of a circle with centre O and radius 4 cm and TT’ || SS’
OP and OQ are joined
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 3
Now OP is the radius and TPT’ is the tangent
OP ⊥ TPT’
Similar OQ ⊥ SS’
But TT’ || SS’
POQ is the diameter
Which is 4 x 2 = 8 cm
Distance between the two parallel tangents is 8 cm

Question 3.
The length of tangent from a point A at a distance of 5 cm from the centre of the circle is 4 cm. What is the radius of the circle ?
Solution:
PA is a tangent to the circle from P at a distance of 5 cm from the centre O
PA = 4 cm
OA is joined and let OA = r
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 4
Now in right ∆OAP,
OP² = OA² + PA²
=> (5)² = r² + (4)²
=> 25 = r + 16
=> r² = 25 – 16 = 9 = (3)²
r = 3
Radius of the circle = 3 cm

Question 4.
Two tangents TP and TQ are drawn from an external point T to a circle with centre O as shown in the following figure. If they are inclined to each other at an angle of 100°, then what is the value of ∠POQ ?
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 5
Solution:
TP and TQ are the tangents from T to the circle with centre O and ∠PTQ = 100°
OT, OP and OQ are joined
OP and OQ are radius
OP ⊥ PT and OQ ⊥ QT
Now in quadrilateral OPTQ,
∠POQ + ∠OPT + ∠PTQ + ∠OQT = 360° (Sum of angles of a quadrilateral)
=> ∠POQ + 90° + 100° + 90° = 360°
=> ∠POQ + 280° = 360°
=> ∠POQ = 360° – 280° = 80°
Hence ∠POQ = 80°

Question 5.
What is the distance between two parallel tangents to a circle of radius 5 cm?
Solution:
In a circle, the radius is 5 cm and centre is O
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 6
TT’ and SS’ are two tangents at P and Q to the circle
Such that TT’ || SS’
Join OP and OQ
OP is radius and TPT’ is the tangent
OP ⊥ TT’
Similarly OQ ⊥ SS’
POQ is the diameter of the circle
Now length of PQ = OP + OQ = 5 + 5 = 10 cm
Hence distance between the two parallel tangents = 10 cm

Question 6.
In Q. No. 1, if PB = 10 cm, what is the perimeter of ∆PCD ?
Solution:
In the figure, PB = 10 cm, CQ = 2 cm
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 7
PA and PB are tangents to the give from P
PA = PB = 10 cm
Similarly, CA and CQ are the tangents
CA = CQ = 2 cm
and DB and DQ are the tangents
DB = DQ
Now, perimeter of ∆PCD
PC + PD + CQ + DQ
= PC + CQ + PD + DQ
= PC + CA + PD + DB {CQ = CA and DQ = DB}
= PA + PB = 10 + 10 = 20 cm

Question 7.
In the figure, CP and CQ are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If CP = 11 cm and BC = 7 cm, then find the length of BR. (C.B.S.E. 2009)
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 8
Solution:
Given : In the figure, CP and CQ are tangents to a circle with centre O
ARB is a third tangent to the circle at R
CP = 11 cm, BC = 7 cm
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 9
To find : The length of BR
BQ and BR are tangents to the circle drawn from B
BQ = BR ….(i)
Similarly CQ = CP
=> BC + BQ = CP = 11 (CP = 11 cm and BC = 7 cm)
=> 7 + BQ = 11
=> BQ = 11 – 7
BQ = 4 cm
But BQ = BR
BR = 4 cm

Question 8.
In the figure, ∆ABC is circumscribing a circle. Find the length of BC. (C.B.S.E. 2009)
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 10
Solution:
∆ABC is circumscribing a circle which touches it at P, Q and R
AC = 11 cm, AR = 4 cm, BR = 3 cm
Now we have to find BC
AR and AQ are tangents to the circle from A
AQ = AR = 4 cm
Then CQ = AC – AQ = 11 – 4 = 7 cm
Similarly,
CP and CQ are tangents from C
CP = CQ = 7 cm
and BP and BR are tangents from B
BP = BR = 3 cm
Now BC = BP + CP = 3 + 7 = 10 cm

Question 9.
In the figure, CP and CQ are tangents from an external point C to a circle with centre O. AB is another tangent which touches the circle at R. If CP = 11 cm and BR = 4 cm, find the length of BC. [CBSE 2010]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 11
Solution:
CP and CQ are the tangents to the circle from C.
AB is another tangent to the same circle which touches at R and meets the first two tangents at A and B. O is the centre of the circle.
OC is joined
CP = 11 cm, BR = 4 cm
CP and CQ are tangents to the circle
CP = CQ = 11 cm
Similarly from B, CR and BQ are the tangents
BQ = BR = 4 cm
Now BC = CQ – BQ = 11 – 4 = 7 cm

Question 10.
Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.
Solution:
Two concentric circles with centre O, have radii 5 cm and 3 cm
AB is a chord which touches the smaller circle at P
OP is joined which is radius of smaller circle
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 12
P is mid-point of AB
OP = 3 cm and OA = 5 cm
Now in right ∆OAP
OA² = OP² + AP²
(5)² = (3)² + AP²
=> 25 = 9 + AP²
=> AP² = 25 – 9 = 16 = (4)²
AP = 4 cm
AB = 2 AP = 2 x 4 cm = 8 cm

Question 11.
In the given figure, PA and PB are tangents to the circle with centre O such that ∠APB = 50°. Write the measure of ∠OAB. [CBSE 2015]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 13
Solution:
In the given figure,
PA and PB are tangents to the circle from P
PA = PB
∠APB = 50°, OA is joined
To find ∠OAB
In ∆PAB
PA = PB
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 14

Question 12.
In the figure, PQ is a chord of a circle and PT is the tangent at P such that ∠QPT = 60°. Then, find ∠PRQ. [NCERT Exemplar]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 15
Solution:
∠OPQ = ∠OQP = 30°, i.e., ∠POQ = 120°
Also, ∠PRQ = \(\frac { 1 }{ 2 }\) reflex ∠POQ

Question 13.
In the figure, PQL and PRM are tangents to the circle with centre O at the points Q and R respectively and S is a point on the circle such that ∠SQL = 50° and ∠SRM = 60°. Then, find ∠QSR. [NCERT Exemplar]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 16
Solution:
Here ∠OSQ = ∠OQS = 90° – 50° = 40°
and ∠RSO = ∠SRO = 90° – 60° = 30°.
Therefore, ∠QSR = 40° + 30° = 70°

Question 14.
In the figure, BOA is a diameter of a circle and the tangent at a point P meets BA produced at T. If ∠PBO = 30°, then find ∠PTA. [NCERT Exemplar]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 17
Solution:
As ∠BPA = 90°,
∠PAB = ∠OPA = 60°
Also OP ⊥ PT.
Therefore, ∠APT = 30°
and ∠PTA = 60° – 30° = 30°

Hope given RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS

RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS

Other Exercises

Answer each of the following questions either in one word or one sentence or as per requirement of the questions :

Question 1.
Write the maximum and minimum values of sin θ.
Solution:
Maximum value of sin θ = 1
and minimum value of sin θ = 0

Question 2.
Write the maximum and minimum values of cos 0.
Solution:
Maximum value cos θ=1 and minimum value of cos θ = θ

Question 3.
What is the maximum value of \(\frac { 1 }{ sec\theta }\) ?
Solution:
Maximum value of \(\frac { 1 }{ sec\theta }\) or cos θ = 1

Question 4.
What is the maximum value of \(\frac { 1 }{ cosec\theta }\)
Solution:
Maximum value of \(\frac { 1 }{ cosec\theta }\) or sin θ = 1

Question 5.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 1
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 2

Question 6.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 3
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 4

Question 7.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 5
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 6

Question 8.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 7
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 8
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 9

Question 9.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 10
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 11

Question 10.
If tan A = \(\frac { 3 }{ 4 }\) and A + B = 90°, then what is the value of cot B ?
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 12

Question 11.
If A + B = 90°, cos B = \(\frac { 3 }{ 5 }\), what is the value of sin A.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 13

Question 12.
Write the acute angle θ satisfying √3 sin θ = cos θ.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 14

Question 13.
Write the Value of cos 1° cos 2° cos 3° ……. cos 179° cos 180°.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 15

Question 14.
Write the Value of tan 10′ tan 15° tan 75° tan 80°.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 16
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 17

Question 15.
If A + B = 90° and tan A = \(\frac { 3 }{ 4 }\) what is cot B?
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 18

Question 16.
If tan A = \(\frac { 5 }{ 12 }\), find the value of (sin A + cos A) sec A. (C.B.S.E. 2008)
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 19
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 20

Hope given RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1

Other Exercises

Question 1.
Determine a point which divides a line segment of length 12 cm internally in the ratio 2 : 3. Also justify your construction.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 12 cm.
(ii) Draw a ray AX at A making an acute angle with AB.
(iii) From B, draw another ray BY parallel to AX.
(iv) Cut off 2 equal parts from AX and 3 equal parts from BY.
(v) Join 2 and 3 which intersects AB at P.
P is the required point which divides AB in the ratio of 2 : 3 internally.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 1

Question 2.
Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 9 cm.
(ii) Draw a ray AX making an acute angle with AB.
(iii) From B, draw another ray BY parallel to AX.
(iv) Cut off 4 equal parts from AX and 3 parts from BY.
(v) Join 4 and 3 which intersects AB at P.
P is the required point which divides AB in the ratio of 4 : 3 internally.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 2

Question 3.
Divide a line segment of length 14 cm internally in the ratio 2 : 5. Also justify your construction.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 14 cm.
(ii) Draw a ray AX making an acute angle with AB.
(iii) From B, draw another ray BY parallel to AX.
(iv) From AX, cut off 2 equal parts and from B, cut off 5 equal parts.
(v) Join 2 and 5 which intersects AB at P.
P is the required point which divides AB in the ratio of 2 : 5 internally.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 3

Question 4.
Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 8 cm.
(ii) Draw a ray AX making an acute angle with ∠BAX = 60° withAB.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 4
(iii) Draw a ray BY parallel to AX by making an acute angle ∠ABY = ∠BAX.
(iv) Mark four points A1, A2, A3, A4 on AX and five points B1, B2, B3, B4, Bs on BY in such a way that AA1 = A1A2 = A2A3 = A3A4 .
(v) Join A4B5.
(vi) Let this line intersect AB at a point P.
Thus, P is the point dividing the line segment AB internally in the ratio of 4 : 5.

 

Hope given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.