CA Foundation Business Economics Study Material – Nature and Scope of Business Economics

CA Foundation Business Economics Study Material – Nature and Scope of Business Economics

Nature of Business Economics

The subject matter of Economics is broadly divided into two major parts namely:—
Micro-Economics, and Macro-Economics
Before dealing with nature of Business Economics, it is necessary to understand the difference between the two.

1. Micro-Economics – Micro means a ‘small part’. Therefore, Micro-economics study the behaviour of small part or a small component or different individuals and organisations of a national economy. It examines how the individual units take decision about rational allocation of their scarce resources.

Micro-Economics covers the following:

  • Theory of Product Pricing;
  • Theory of Consumer Behaviour,
  • Theory of Factor Pricing;
  • The economic conditions of a section of people;
  • Behaviour of firms; and
  • Location of industry.

2. Macro-Economics – Macro means ‘large’. Therefore, macro-economics deals with the large economic activity. It study the economic system of a country as a whole ie. overall condition of an economy. It is a study of large aggregates like total employment, the general price level. Total output, total consumption, total saving and total investments. It also analyses how these aggregates change over time.

Macro-Economics covers the following:

  • National Income and National Output;
  • The General Price Level and interest rates;
  • Balance of Trade and Balance of Payments;
  • External value of currency ie. exchange rate;
  • Overall level of savings and investments ie. capital formation; and
  • The level of employment and rate of economic growth.

Business Economics is primarily concerned with Micro-Economics. However, knowledge and understanding of Macro-economic environment is also necessary. This is because macro-economic environment influence individual firm’s performance and decisions.

As already seen Business Economics enables application of economic knowledge, logic, theories and analytical tools. It is Applied Economics that fills the gap between economic theory and business practice. The following will describe the nature of Business Economics:

  1. Business Economics is a Science: Science is a systematised body of knowledge which trace the cause and effect relationships. Business Economics uses the tools of Mathematics, Statistics and Econometrics with economic theory to take decisions and frame strategies. Thus, it makes use of scientific methods.
  2. Based on Micro-Economics: As Business Economics is concerned more with the decision making problems of a particular business establishment. Micro level approach suits is more. Thus, Business Economics largely depends on the techniques of Micro-Economics.
  3. Incorporates elements of Macro Analysis: A business unit is affected by external environment of the economy in which it operates. A business units is affected by general price level, level of employment, govt, policies related to taxes, interest rates, industries, exchange rates, etc. A business manager should consider such macro-economic variables which may affect present or future business environment.
  4. Business Economics is an Art: It is related with practical application of laws and principles to achieve the objectives.
  5. Use of Theory of Markets & Private Enterprise: It uses the theory of markets and resource allocation in a capitalist economy.
  6. Pragmatic Approach: Micro-Economics is purely theoretical while, Business Economics is practical in its approach.
  7. Inter-disciplinary in nature: It incorporates tools from other disciplines like Mathematics, Statistics, Econometrics, Management Theory, Accounting, etc.
  8. Normative in Nature: Economic theory has been developed along two lines – POSITIVE and NORMATIVE.

A positive science or pure science deals with the things as they are and their CAUSE and EFFECTS only. It states ‘what is’? It is DESCRIPTIVE in nature. It does not pass any moral or value judgments.

A normative science deals with ‘what ought to be’ or ‘what should be’. It passes value judgments and states what is right and what is wrong. It is PRESCRIPTIVE in nature as it offers suggestions to solve problems. Normative science is more practical, realistic and useful science.

Business Economics is normative in nature because it suggests application of economic principles to solve problems of an enterprise, However, firms should have clear understanding of their environment and therefore, it has to study positive theory.

Scope of Business Economics

The scope of Business Economics is wide. Economic theories can be directly applied to two types of business issues namely—

  1. Micro-economics is applied to operational or internal issues off a firm.
  2. Macro-economics is applied to environment or external issues on which the firm has no control.

1. Micro-economics applied to operational or internal issues
Issues like choice of business size of business, plant layout, technology, product decisions, pricing, sales promotion, etc. are dealt by Micro-economic theories. It covers—

  • Demand analysis and forecasting
  • Production and Cost Analysis
  • Inventory Management
  • Market Structure and Pricing Analysis
  • Resource Allocation
  • Theory of Capital and Investment Decisions
  • Profitability Analysis
  • Risk and Uncertainty Analysis.

2. Macro-economics applied to environmental or external issues
The major economic factors relate to—

  • the type of economic system
  • stage of business cycles
  • the general trends in national income, employment, prices, saving and investment.
  • government’s economic policies
  • working of financial sector and capital market
  • socio-economic organisations
  • social and political environment.

These external issues has to be considered by a firm in business decisions and frame its policies accordingly to minimize their adverse effects.

RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS

RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS

Other Exercises

Mark the correct alternative in each of the following :
Question 1.
If the equation x² + 4x + k = 0 has real and distinct roots, then
(a) k < 4
(b) k > 4
(c) k ≥ 4
(d) k ≤ 4
Solution:
(a) In the equation x² + 4x + k = 0
a = 1, b = 4, c = k
D = b² – 4ac = (4)² – 4 x 1 x k = 16 – 4k
Roots are real and distinct
D > 0
=> 16 – 4k > 0
=> 16 > 4k
=> 4 > k
=> k < 4

Question 2.
If the equation x² – ax + 1 = 0 has two distinct roots, then
(a) |a| = 2
(b) |a| < 2
(c) |a| > 2
(d) None of these
Solution:
(c) In the equation x² – ax + 1 = 0
a = 1, b = – a, c = 1
D = b² – 4ac = (-a)² – 4 x 1 x 1 = a² – 4
Roots are distinct
D > 0
=> a² – 4 > 0
=> a² > 4
=> a² > (2)²
=> |a| > 2

Question 3.
If the equation 9x2 + 6kx + 4 = 0, has equal roots, then the roots are both equal to
(a) ± \(\frac { 2 }{ 3 }\)
(b) ± \(\frac { 3 }{ 2 }\)
(c) 0
(d) ± 3
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 1
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 2

Question 4.
If ax2 + bx + c = 0 has equal roots, then c =
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 3
Solution:
(d) In the equation ax2 + bx + c = 0
D = b2 – 4ac
Roots are equal
D = 0 => b2 – 4ac = 0
=> 4ac = b2
=> c = \(\frac { { b }^{ 2 } }{ 4a }\)

Question 5.
If the equation ax2 + 2x + a = 0 has two distinct roots, if
(a) a = ±1
(b) a = 0
(c) a = 0, 1
(d) a = -1, 0
Solution:
(a) In the equation ax2 + 2x + a = 0
D = b2 – 4ac = (2)2 – 4 x a x a = 4 – 4a2
Roots are real and equal
D = 0
=> 4 – 4a2 = 0
=> 4 = 4a2
=> 1 = a2
=> a2 = 1
=> a2 = (±1)2
=> a = ±1

Question 6.
The positive value of k for which the equation x2 + kx + 64 = 0 and x2 – 8x + k = 0 will both have real roots, is
(a) 4
(b) 8
(c) 12
(d) 16
Solution:
(d) In the equation x2 + kx + 64 = 0
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 4

Question 7.
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 5
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 6
Which is not possible
x = 3 is correct

Question 8.
If 2 is a root of the equation x2 + bx + 12 = 0 and the equation x2 + bx + q = 0 has equal roots, then q =
(a) 8
(b) – 8
(c) 16
(d) -16
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 7

Question 9.
If the equation (a2 + b2) x2 – 2 (ac + bd) x + c2 + d2 = 0 has equal roots, then
(a) ab = cd
(b) ad = bc
(c) ad = √bc
(d) ab = √cd
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 8

Question 10.
If the roots of the equation (a2 + b2) x2 – 2b (a + c) x + (b2 + c2) = 0 are equal, then ;
(a) 2b = a + c
(b) b2 = ac
(c) b = \(\frac { 2ac }{ a + c }\)
(d) b = ac
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 9

Question 11.
If the equation x2 – bx + 1 = 0 does not possess real roots, then
(a) -3 < b < 3
(b) -2 < b < 2
(c) b > 2
(d) b < -2
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 10

Question 12.
If x = 1 is a common root of the equations ax2 + ax + 3 = 0 and x2 + x + b = 0, then ab =
(a) 3
(b) 3.5
(c) 6
(d) -3
Solution:
(a) In the equation
ax2 + ax + 3 = 0 and x2 + x + b = 0
Substituting the value of x = 1, then in ax2 + ax + 3 = 0
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 11

Question 13.
If p and q are the roots of the equation x2 – px + q + 0, then
(a) p = 1, q = -2
(b) p = 0, q = 1
(c) p = -2, q = 0
(d) p = -2, q = 1
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 12

Question 14.
If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form ax2 + bx + 1 = 0 having real roots is
(a) 10
(b) 7
(c) 6
(d) 12
Solution:
(b)
ax2 + bx + 1 = 0
D = b2 – 4a = b2 – 4a
Roots are real
D ≥ 0
=> b2 – 4a ≥ 0
=> b2 ≥ 4a
Here value of b can be 2, 3 or 4
If b = 2, then a can be 1,
If b = 3, then a can be 1, 2
If b = 4, then a can be 1, 2, 3, 4
No. of equation can be 7

Question 15.
The number of quadratic equations having real roots and which do not change by squaring their roots is
(a) 4
(b) 3
(c) 2
(d) 1
Solution:
(c) There can be two such quad, equations whose roots can be 1 and 0
The square of 1 and 0 remains same
No. of quad equation are 2

Question 16.
If (a2 + b2) x2 + 2(ab + bd) x + c2 + d2 = 0 has no real roots, then
(a) ad = bc
(b) ab = cd
(c) ac = bd
(d) ad ≠ bc
Solution:
(d)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 13

Question 17.
If the sum of the roots of the equation x2 – x = λ (2x – 1) is zero, then λ =
(a) -2
(b) 2
(c) – \(\frac { 1 }{ 2 }\)
(d) \(\frac { 1 }{ 2 }\)
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 14

Question 18.
If x = 1 is a common root of ax2 + ax + 2 = 0 and x2 + x + b = 0 then, ab =
(a) 1
(b) 2
(c) 4
(d) 3
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 15

Question 19.
The value of c for which the equation ax2 + 2bx + c = 0 has equal roots is
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 16
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 17

Question 20.
If x2 + k (4x + k – 1) + 2 = 0 has equal roots, then k =
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 18
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 19
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 20

Question 21.
If the sum and product of the roots of the equation kx2 + 6x + 4k = 0 are equal, then k =
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 21
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 22

Question 22.
If sin α and cos α are the roots of the equations ax2 + bx + c = 0, then b2 =
(a) a2 – 2ac
(b) a2 + 2ac
(b) a2 – ac
(d) a2 + ac
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 23
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 24

Question 23.
If 2 is a root of the equation x2 + ax + 12 = 0 and the quadratic equation x2 + ax + q = 0 has equal roots, then q =
(a) 12
(b) 8
(c) 20
(d) 16
Solution:
(d)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 25

Question 24.
If the sum of the roots of the equation x2 – (k + 6) x + 2 (2k – 1) = 0 is equal to half of their product, then k =
(a) 6
(b) 7
(c) 1
(d) 5
Solution:
(b) In the quadratic equation
x2 – (k + 6) x + 2 (2k – 1) = 0
Here a = 1, b = – (k + 6), c = 2 (2k – 1)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 26

Question 25.
If a and b are roots of the equation x2 + ax + b = 0, then a + b =
(a) 1
(b) 2
(c) -2
(d) -1
Solution:
(d) a and b are the roots of the equation x2 + ax + b = 0
Sum of roots = – a and product of roots = b
Now a + b = – a
and ab = b => a = 1 ….(i)
2a + b = 0
=> 2 x 1 + b = 0
=> b = -2
Now a + b = 1 – 2 = -1

Question 26.
A quadratic equation whose one root is 2 and the sum of whose roots is zero, is
(a) x2 + 4 = 0
(b) x2 – 4 = 0
(c) 4x2 – 1 = 0
(d) x2 – 2 = 0
Solution:
(b) Sum of roots of a quad, equation = 0
One root = 2
Second root = 0 – 2 = – 2
and product of roots = 2 x (-2) = – 4
Equation will be
x2 + (sum of roots) x + product of roots = 0
x2 + 0x + (-4) = 0
=> x2 – 4 = 0

Question 27.
If one root of the equation ax2 + bx + c = 0 is three times the other, then b2 : ac =
(a) 3 : 1
(b) 3 : 16
(c) 16 : 3
(d) 16 : 1
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 27

Question 28.
If one root of the equation 2x2 + kx + 4 = 0 is 2, then the other root is
(a) 6
(b) -6
(c) -1
(d) 1
Solution:
(d) The given quadratic equation 2x2 + kx + 4 = 0
One root is 2
Product of roots = \(\frac { c }{ a }\) = \(\frac { 4 }{ 2 }\) = 2
Second root = \(\frac { 2 }{ 2 }\) = 1

Question 29.
If one root of the equation x2 + ax + 3 = 0 is 1, then its other root is
(a) 3
(b) -3
(c) 2
(d) -2
Solution:
(a) The quad, equation is x2 + ax + 3 = 0
One root =1
and product of roots = \(\frac { c }{ a }\) = \(\frac { 3 }{ 1 }\) = 3
Second root = \(\frac { 3 }{ 1 }\) = 3

Question 30.
If one root of the equation 4x2 – 2x + (λ – 4) = 0 be the reciprocal of the other, then λ =
(a) 8
(b) -8
(c) 4
(d) -4
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 28

Question 31.
If y = 1 is a common root of the equations ay2 + ay + 3 = 0 and y2 + y + b = 0, then ab equals
(a) 3
(b) – \(\frac { 1 }{ 2 }\)
(c) 6
(d) -3 [CBSE 2012]
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS 29

Question 32.
The values of k for which the quadratic equation 16x2 + 4kx + 9 = 0 has real and equal roots are
(a) 6, – \(\frac { 1 }{ 6 }\)
(b) 36, -36
(c) 6, -6
(d) \(\frac { 3 }{ 4 }\) , – \(\frac { 3 }{ 4 }\) [CBSE 2014]
Solution:
(c) 16x2 + 4kx + 9 = 0
Here a = 16, b = 4k, c = 9
Now D = b2 – 4ac = (4k)2 – 4 x 16 x 9 = 16k2 – 576
Roots are real and equal
D = 0 or b2 – 4ac = 0
=> 16k2 – 576 = 0
=> k2 – 36 = 0
=> k2 = 36 = (± 6)2
k = ± 6
k = 6, -6

Hope given RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

CA Foundation Business Economics Study Material – Introduction

CA Foundation Business Economics Study Material Chapter 1 Nature and Scope of Business Economics – Introduction

WHAT IS ECONOMICS ABOUT?

The word ‘Economics’ is derived from the Greek word ‘Oikonomia’ which means household management. Till 19th century, economics was known as ‘Political Economy’. In 1776, Adam Smith published his book entitled “An Inquiry into the Nature and Causes of the Wealth of Nations” which is considered as the first modern work of Economics.

Every individual, every society and every country in this world faces the problem of making CHOICE. This is because of two facts—

  • Human wants are unlimited; and
  • The means (resources) to satisfy unlimited wants are relatively scarce and these scarce resources have alternative uses.

As a result we are confronted with the problem of making choice of wants to be satisfied or the choice among the uses of resources. Thus, we are faced with the problem of allocation of resources to various uses.

The definition of Economics is however is narrow because it concentrates only at present i.e., how to use relative scarce resources to satisfy unlimited human wants. So it gives the picture of a society with fixed resources, skills and productive capacity, deciding what type of goods and services to be produced and how to distribute among the members of society.

However, over a period of time growth takes place. With growth there is increase in the resources and improvement in the quality of resources. But this growth in production and income is not smooth. It is through ups and downs. Economics, therefore, deals not only with how a country allocates its scarce productive resources but also with increase in the productive capacity of resources and with the reasons which led to sharp fluctuations in the use of resources.

Economics gives us understanding on economic issues like changes in the price of a commodity, changes in general price level of goods and services, poverty, level of unemployment, etc. The understanding of such helps us to decide the models and frameworks that can be applied in different situations. The tools of economics helps us to choose the best course of action from various alternatives available. However, economic problems are of complex nature and are affected by economic forces, political set-up, social norms, etc. Thus, economics does not guarantee that all problems will be solved appropriately but it helps us to examine the problem in right perspective and find suitable measures to deal with it.

Meaning of Business Economics

  • Business Economics is also referred to as Managerial Economics. It is application of economic theory and methodology.
  • Every business involves decision-making as survival and success depends on sound decisions.
  • Decision making means the process of –
    • evaluating various course of action,
    • making rational judgment on the basis of available information, and
    • selecting i.e. making choice of a suitable alternative by decision maker.
  • Decision making is not simple and straight forward. It has become very complex due to ever changing business environments, growing competition, large scale production, big size of business houses, complex laws, cost awareness, etc. In other words the economic environment in which the firm operates is very complex and dynamic.
  • Business Economics provides a scientific base to the professional management of a business activity. It provides tools like budgeting, market analysis, cost-benefit analysis, etc. which can be scientifically applied to take sound business decisions. Thus, Business Economics is a sub-branch of Economics which aims at the scientific application of economic knowledge, logic, theories and tools to take rational business decisions. Thus, it is an APPLIED ECONOMICS.
  • Business Economics is closely connected with both viz., Micro-Economic Theory as well as Macro-Economic Theory. It is also useful to the managers of ‘not-for-profit’ organisations.

DEFINITIONS OF BUSINESS ECONOMICS

  • “Business Economics in terms of the use of economic analysis in the formulation of business policies. Business Economics is essentially a component of Applied Economics as it includes application of selected quantitative techniques such as linear programming, regression analysis, capital budgeting, break-even analysis and cost analysis.” – Joel Dean
  • “Business Economics is concerned with the application of economic laws, principles and methodologies to the managerial decision making process within a business firm under the conditions of risks and uncertainties.” – Evans Douglas

RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS

RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS

Other Exercises

Answer each of the following questions either in one word or one sentence or as per requirement of the question :
Question 1.
Write the value of k for which the quadratic equation x² – kx + 4 = 0 has equal roots.
Solution:
x² – kx + 4 = 0
Here a = 1, b = – k, c = 4
Discriminant (D) = b² – 4ac
= (-k)² – 4 x 1 x 4 = k² – 16
The roots are equal
D = 0 => k² – 16 = 0
=> (k + 4) (k – 4) = 0.
Either k + 4 = 0, then k = – 4
or k – 4 = 0, then k = 4
k = 4, -4

Question 2.
What is the nature of roots of the quadratic equation 4x² – 12x – 9 = 0 ?
Solution:
4x² – 12x – 9 = 0
Here a = 4, b = -12, c = – 9
Discriminant (D) = b² – 4ac = (-12)² – 4 x 4 x (-9)
= 144 + 144 = 288
D > 0
Roots are real and distinct

Question 3.
If 1 + √2 is a root of a quadratic equation with rational co-efficients, write its other root.
Solution:
The roots of the quadratic equation with rational co-efficients are conjugate
The other root will be 1 – √2

Question 4.
Write the number of real roots of the equation x² + 3 |x| + 2 = 0.
Solution:
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS 1

Question 5.
Write the sum of the real roots of the equation x² + |x| – 6 = 0.
Solution:
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS 2

Question 6.
Write the set of values of ‘a’ for which the equation x² + ax – 1 = 0, has real roots.
Solution:
x² + ax – 1=0
Here a = 1, b = a, c = -1
D = b² – 4ac = (a)² – 4 x 1 x (-1) = a² + 4
Roots are real
D ≥ 0 => a² + 4 ≥ 0
For all real values of a, the equation has real roots.

Question 7.
In there any real value of ‘a’ for which the equation x² + 2x + (a² + 1) = 0 has real roots ?
Solution:
x² + 2x + (a² + 1) = 0
D = (-b)² – 4ac = (2)² – 4 x 1 (a² + 1) = 4 – 4a² – 4 = – 4a²
For real value of x, D ≥ 0
But – 4a² ≤ 0
So it is not possible
There is no real value of a

Question 8.
Write the value of λ, for which x² + 4x + λ is a perfect square.
Solution:
In x² + 4x + λ
a = 1, b = 4, c = λ
x² + 4x + λ will be a perfect square if x² + 4x + λ = 0 has equal roots
D = b² – 4ac = (4)² – 4 x 1 x λ = 16 – 4λ
D = 0
=> 16 – 4λ = 0
=> 16 = 4A
=> λ = 4
Hence λ = 4

Question 9.
Write the condition to be satisfied for which equations ax² + 2bx + c = 0 and bx² – 2√ac x + b = 0 have equal roots.
Solution:
In ax² + 2bx + c = 0
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS 3

Question 10.
Write the set of values of k for which the quadratic equation has 2x² + kx – 8 = 0 has real roots.
Solution:
In 2x² + kx – 8 = 0
D = b²- 4ac = (k)² – 4 x 2 x (-8) = k² + 64
The roots are real
D ≥ 0
k² + 64 ≥ 0
For all real values of k, the equation has real roots.

Question 11.
Write a quadratic polynomial, sum of whose zeros is 2√3 and their product is 2.
Solution:
Sum of zeros = 2√3
and product of zeros = 2
The required polynomial will be
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS 4

Question 12.
Show that x = – 3 is a solution of x² + 6x + 9 = 0 (C.B.S.E. 2008)
Solution:
The given equation is x² + 6x + 9 = 0
If x = -3 is its solution then it will satisfy it
L.H.S. = (-3)² + 6 (-3) + 9 = 9 – 18 + 9 = 18 – 18 = 0 = R.H.S.
Hence x = – 3 is its one root (solution)

Question 13.
Show that x = – 2 is a solution of 3x² + 13x + 14 = 0. (C.B.S.E. 2008)
Solution:
The given equation is 3x² + 13x + 14 = 0
If x = – 2 is its solution, then it will satisfy it
L.H.S. = 3(-2)² + 13 (- 2) + 14 =3 x 4 – 26 + 14
= 12 – 26 + 14 = 26 – 26 = 0 = R.H.S.
Hence x = – 2 is its solution

Question 14.
Find the discriminant of the quadratic equation 3√3 x² + 10x + √3 =0. (C.B.S.E. 2009)
Solution:
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS 5

Question 15.
If x = \(\frac { -1 }{ 2 }\), is a solution of the quadratic equation 3x² + 2kx – 3 = 0, find the value of k. [CBSE 2015]
Solution:
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS 6

Hope given RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13

RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13

Other Exercises

Question 1.
A piece of cloth costs Rs. 35. If the piece were 4 m longer and each metre costs Re. one less, the cost would remain unchanged. How long is the piece ?
Solution:
Let the length of piece of cloth = x m
Total cost = Rs. 35
Cost of 1 m cloth = Rs. \(\frac { 35 }{ x }\)
According to the condition,
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 1
=> x (x + 14) – 10 (x + 14) = 0
=> (x + 14) (x – 10) = 0
Either x + 14 = 0, then x = – 14 which is not possible being negative
or x – 10 = 0, then x = 10
Length of piece of cloth = 10 m

Question 2.
Some students planned a picnic. The budget for food was Rs. 480. But eight of these failed to go and thus the cost of food for each member increased by Rs. 10. How many students attended the picnic ?
Solution:
Let the number of students = x
and total budget = Rs. 480
Share of each students = Rs. \(\frac { 480 }{ x }\)
According to the condition,
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 2
=> x (x + 16) – 24 (x + 16) = 0
=> (x + 16) (x – 24) = 0
Either x + 16 = 0, then x = -16 which is not possible being negative
or x – 24 = 0, then x = 24
Number of students = 24
and number of students who attended the picnic = 24 – 8 = 16

Question 3.
A dealer sells an article for Rs. 24 and gains as much percent as the cost price of the article. Find the cost price of the article.
Solution:
Let cost price ofjfie article = Rs. x
Selling price = Rs. 24
Gain = x %
According to the condition,
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 3
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 4

Question 4.
Out of a group of swans, \(\frac { 7 }{ 2 }\) times the square root of the total number are playing on the share of a pond. The two remaining ones are swinging in water. Find the total number of swans.
Solution:
Let the total number of swans = x
According to the condition,
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 5
Number of total swans = 16

Question 5.
If the list price of a toy is reduced by Rs. 2, a person can buy 2 toys mope for Rs. 360. Find the original price of the toy. (C.B.S.E. 2002C)
Solution:
List price of the toy = Rs. x
Total amount = Rs. 360
Reduced price of each toy = (x – 2)
According to the condition,
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 6
=> x (x – 20) + 18 (x – 20) = 0
=> (x – 20) (x + 18) = 0
Either x – 20 = 0, then x = 20
or x + 18 = 0, then x = -18 which is not possible being negative
Price of each toy = Rs. 20

Question 6.
Rs. 9000 were divided equally among a certain number of persons. Had there been 20 more persons, each would have got Rs. 160 less. Find the original number of persons.
Solution:
Total amount = Rs. 9000
Let number of persons = x
Then each share = Rs. \(\frac { 9000 }{ x }\)
Increased persons = (x + 20)
According to the condition,
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 7
Either x + 45 = 0, then x = -45 which is not possible being negative
or x – 25 = 0, then x = 25
Number of persons = 25

Question 7.
Some students planned a picnic. The budget for food was Rs. 500. But 5 of them failed to go and thus the cost of food for each number increased by Rs. 5. How many students attended the picnic? (C.B.S.E. 1999)
Solution:
Let number of students = x
Total budget = Rs. 500
Share of each student = Rs. \(\frac { 500 }{ x }\)
No. of students failed to go = 5
According to the given condition,
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 8
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 9

Question 8.
A pole has to be erected at a point on the boundary of a. circular park of diameter 13 metres in such a way that the difference, of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it the possible to do so ? If yes, at what distances from the two gates Should the pole be erected ?
Solution:
In a circle, AB is the diameters and AB = 13 m
RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 10
Either x + 12 = 0, then x = -12 which is not possible being negative
or x – 5 = 0, then x = 5
P is at a distance of 5 m from B and 5 + 7 = 12 m from A

Question 9.
In a class test, the sum of the marks obtained by P in Mathematics and Science is 28. Had he got 3 marks more in Mathematics and 4 marks less in Science. The product of their marks, would have been 180. Find his marks in the two subjects. (C.B.S.E. 2008)
Solution:
Sum of marks in Mathematics and Science = 28
Let marks in Math = x
Then marks in Science = 28 – x
According to the condition,
(x + 3) (28 – x – 4) = 180
=> (x + 3) (24 – x) = 180
=> 24x – x² + 72 – 3x = 180
=> 21x – x² + 72 – 180 = 0
=> – x² + 21x – 108 = 0
=> x² – 21x + 108 = 0
=> x² – 9x – 12x + 108 = 0
=> x (x – 9) – 12 (x – 9) – 0
=> (x – 9)(x – 12) = 0
Either x – 9 = 0, then x = 9
or x – 12 = 0, then x = 12
(i) If x = 9, then Marks in Maths = 9 and marks in Science = 28 – 9 = 19
(ii) If x = 12, then Marks in Maths = 12 and marks in Science = 28 – 12 = 16

Question 10.
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of her marks would have been 210. Find her marks in two subjects. [NCERT]
Solution:
Sum of marks in Mathematics and English = 30
Let marks obtained in Mathematics = x
Then in English = 30 – x
According to the condition,
(x + 2) (30 – x – 3) = 210
=> (x + 2) (27 – x) = 210
=> 27x – x² + 54 – 2x – 210 = 0
=> – x² + 25x – 156 = 0
=> x² – 25x + 156 = 0
=> x² – 12x – 13x +156 = 0
=> x (x – 12) – 13 (x – 12) = 0
=> (x – 12) (x – 13) = 0
Either x – 12 = 0, then x = 12
or x – 13 = 0, then x = 13
(i) If x = 12, then
Marks in Maths =12 and in English = 30 – 12 = 18
(ii) If x = 13, then
Marks in Maths = 13 and in English = 30 – 13 = 17

Question 11.
A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs. 90, And the number of articles produced and the cost of each article. [NCERT]
Solution:
Total cost = Rs. 90
Let number of articles = x
Then price of each articles = 2x + 3
x (2x + 3) = 90
=> 2x² + 3x – 90 = 0
=> 2x² – 12x + 15x – 90 = 0
=> 2x (x – 6) + 15 (x – 6) = 0
=> (x – 6) (2x + 15) = 0
Either x – 6 = 0, then x = 6
or 2x + 15 = 0 then 2x = -15 => x = \(\frac { -15 }{ 2 }\) which is not possible being negative
x = 6
Number of articles = 6
and price of each article = 2x + 3 = 2 x 6 + 3 = 12 + 3 = 15

Question 12.
At t minutes past 2 pm the time needed by the minutes hand and a clock to show 3 pm was found to be 3 minutes less than \(\frac { { t }^{ 2 } }{ 4 }\) minutes. Find t.
Solution:
We know that, the time between 2 pm to 3 pm = 1 h = 60 minutes
Given that, at t minutes past 2 pm, the time needed by the min. hand of a clock to show 3 pm was found to be 3 min. less than \(\frac { { t }^{ 2 } }{ 4 }\) min.
i.e., t = (\(\frac { { t }^{ 2 } }{ 4 }\) – 3) = 60
=> 4t + t² – 12 = 240
=> t² + 4t – 252 = 0
=> t² + 18t – 14t – 252 = 0 [by splitting the middle term]
=> t (t + 18) – 14 (t + 18) = 0
=> (t + 18) (t – 14) = 0 [since, time cannot be negative, so t ≠ -18]
t = 14 min.
Hence, the required value of t is 14 minutes

Hope given RD Sharma Class 10 Solutions Chapter 4 Quadratic Equations Ex 4.13 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.