RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4

RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Other Exercises

Question 1.
(i) 10th term of the A.P. 1, 4, 7, 10, ………
(ii) 18th term of the A.P. √2 , 3√2 , 5√2 , ……….
(iii) nth term of the A.P. 13, 8, 3, -2, ……..
(iv) 10th term of the A.P. -40, -15, 10, 35, ……..
(v) 8th term of the A.P. 117, 104, 91, 78, ………..
(vi) 11th term of the A.P. 10.0 , 10.5, 11.0, 11.5, ……….
(vii) 9th term of the A.P. \(\frac { 3 }{ 4 }\) , \(\frac { 5 }{ 4 }\) , \(\frac { 7 }{ 4 }\) , \(\frac { 9 }{ 4 }\) , ………
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 1
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 2
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 3
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 4

Question 2.
(i) Which term of the A.P. 3, 8, 13, …… is 248 ?
(ii) Which term of the A.P. 84, 80, 76, ….. is 0 ?
(iii) Which term of the A.P. 4, 9, 14, ….. is 254 ?
(iv) Which term of the A.P. 21, 42, 63, 84, ….. is 420 ?
(v) Which term of the A.P. 121, 117, 113, ….. is its first negative term ?
Solution:
(i) A.P. is 3, 8, 13, …, 248
Here first term (a) = 3
and common difference (d) = 8 – 3 = 5
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 5
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 6
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 7

Question 3.
(i) Is 68 a term of the A.P. 7, 10, 13, …… ?
(ii) Is 302 a term of the A.P. 3, 8, 13, ….. ?
(ii) Is -150 a term of the A.P. 11, 8, 5, 2, …… ?
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 8
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 9

Question 4.
How many terms are there in the A.P. ?
(i) 7, 10, 13, … 43
(ii) -1, – \(\frac { 5 }{ 6 }\) , – \(\frac { 2 }{ 3 }\) , – \(\frac { 1 }{ 2 }\) , …….., \(\frac { 10 }{ 3 }\)
(iii) 7, 13, 19, …, 205
(iv) 18, 15\(\frac { 1 }{ 2 }\) , 13, …, -47
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 10
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 11
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 12
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 13

Question 5.
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
Solution:
The first term of an A.P. (a) = 5
and common difference (d) = 3
Last term = 80
Let the last term be nth
an = a + (n – 1) d
=> 80 = 5 + (n – 1) x 3
=> 80= 5 + 3n – 3
=> 3n = 80 – 5 + 3 = 78
=> n = 26
Number of terms = 26

Question 6.
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
Solution:
6th term of A.P. = 19
and 17th term = 41
Let a be the first term, and d be the common difference
We know that
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 14

Question 7.
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 15

Question 8.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
Solution:
Let a, a + d, a + 2d, a + 3d, ……… be an A.P.
an = a + (n – 1) d
Now a10 = a + (10 – 1) d = a + 9d
and a15 = a + (15 – 1) d = a + 14d
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 16

Question 9.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 17

Question 10.
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
Solution:
Let a, a + d, a + 2d, a + 3d, …….. be an A.P.
an = a + (n – 1) d
10th (a10) = a + (10 – 1) d = a + 9d
and 24th term (a24) = a + (24 – 1) d = a + 23d
24th term = 2 x 10th term
a + 23d = 2 (a + 9d)
=> a + 23d = 2a + 18d
=> 2a – a = 23d – 18d
=> a = 5d ….(i)
Now 72nd term = a + (72 – 1)d = a + 71d
and 34th term = a + (34 – 1) d = a + 33d
Now a + 71d – 5d + 71d = 76d
and a + 33d = 5d+ 33d = 38d
76d = 2 x 38d
72th term = 2 (34th term) = twice of the 34th term
Hence proved.

Question 11.
The 26th, 11th and last term of an A.P. are 0, 3 and – \(\frac { 1 }{ 5 }\) , respectively. Find the common difference and the number of terms. [NCERT Exemplar]
Solution:
Let the first term, common difference and number of terms of an A.P. are a, d and n, respectively.
We know that, if last term of an A.P. is known, then
l = a + (n – 1) d ……(i)
and nth term of an A.P is
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 18
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 19

Question 12.
If the nth term of the A.P. 9, 7, 5, … is same as the nth term of the A.P. 15, 12, 9, … find n.
Solution:
In A.P 9, 7, 5, ………
Here first term (a) = 9 and d = 7 – 9 = -2 {or 5 – 7 = -2}
nth term (an) = a + (n – 1) d = 9 + (n – 1) (-2) = 9 – 2n + 2 = 11 – 2n
Now in A.P. 15, 12, 9, …..
Here first term (a) = 15 and (d) = 12 – 15 = -3
nth term (an) = a + (n – 1) d = 15 + (n – 1) x (-3)
The nth term of first A.P. = nth term of second A.P.
11 – 2n = 18 – 3n
=> -2n + 3n = 18 – 11
=> n = 7
Hence n = 7

Question 13.
Find the 12th term from the end of the following arithmetic progressions :
(i) 3, 5, 7, 9, … 201
(ii) 3, 8, 13,…, 253
(iii) 1, 4, 7, 10, …, 88
Solution:
(i) In the A.P. 3, 5, 7, 9, … 201
First term (a) = 3, last term (l) = 201
and common difference (d) = 5 – 3 = 2
We know that nth term from the last = l – (n – 1 ) d
12th term from the last = 201 – (12 – 1) x 2 = 201 – 11 x 2 = 201 – 22 = 179
(ii) In the A.P. 3, 8, 13, …, 253
First term (a) = 3
Common difference (d) = 8 – 3 = 5
and last term = 253
The nth term from the last = l – (n – 1) d
12th term from the last = 253 – (12 – 1) x 5 = 253 – 11 x 5 = 253 – 55 = 198
(iii) In the A.P. 1, 4, 7, 10, …, 88
First term (a) = 1
Common difference (d) = 4 – 1 = 3
and last term = 88
The nth term from the last = l – (n – 1) d
12th term from the last = 88 – (12 – 1) x 3 = 88 – 11 x 3 = 88 – 33 = 55

Question 14.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 20

Question 15.
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
Solution:
In an A.P.
6th term (a6) = 12
and 8th term (a8) = 22
Let a be the first term and d be the common difference, then
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 21

Question 16.
How many numbers of two digit are divisible by 3 ?
Solution:
Let n be the number of terms which are divisible by 3 and d are of two digit numbers
Let a be the first term and d be the common difference, then
a = 12, d = 3, last term = 99
an = a + (n – 1) d
99 = 12 + (n – 1) x 3
=> 99 = 12 + 3n – 3
=> 3n = 99 – 9
=> n = 30
Number of terms = 30

Question 17.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Solution:
In an A.P.
n = 60
First term (a) = 7 and last term (l) = 125
Let d be the common difference, then
a60 = a + (60 – 1) d
=> 125 = 7 + 59d
=> 59d = 125 – 7 = 118
Common difference = 2
Now 32nd term (a32) = a + (32 – 1) d = 7 + 31 x 2 = 7+ 62 = 69

Question 18.
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 22

Question 19.
The first term of an A.P. is 5 and its 100th term is -292. Find the 50th term of this A.P.
Solution:
First term of an A.P. = 5
and 100th term = -292
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 23

Question 20.
Find a30 – a20 for the A.P.
(i) -9, -14, -19, -24, …
(ii) a, a + d, a + 2d, a + 3d, …
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 24

Question 21.
Write the expression an – ak for the A.P. a, a + d, a + 2d, ……
Hence, find the common difference of the A.P. for which
(i) 11th term is 5 and 13th term is 79.
(ii) a10 – a5 = 200
(iii) 20th term is 10 more than the 18th term.
Solution:
In the A.P. a, a + d, a + 2d, …..
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 25

Question 22.
Find n if the given value of x is the nth term of the given A.P.
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 26
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 27
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 28
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 29
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 30

Question 23.
The eighth term of an A.P. is half of its second term and the eleventh term exceeds one third of its fourth term by 1. Find the 15th term.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 31

Question 24.
Find the arithmetic progression whose third term is 16 and seventh term exceeds its fifth term by 12.
Solution:
Let a, a + d, a + 2d, a + 3d, ………. be the A.P.
an = a + (n – 1) d
But a3 = 16
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 32

Question 25.
The 7th term of an A.P. is 32 and its 13th term is 62. Find the A.P. [CBSE 2004]
Solution:
Let a, a + d, a + 2d, a + 3d, be the A.P.
Here a is the first term and d is the common difference
an = a + (n – 1) d
Now a7 = a + (7 – 1) d = a + 6d = 32 ….(i)
and a13 = a + (13 – 1) d = a + 12d = 62 ….(ii)
Subtracting (i) from (ii)
6d = 30
=> d = 5
a + 6 x 5 = 32
=> a + 30 = 32
=> a = 32 – 30 = 2
A.P. will be 2, 7, 12, 17, ………..

Question 26.
Which term of the A.P. 3, 10, 17, … will be 84 more than its 13th term ? [CBSE 2004]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 33
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 34

Question 27.
Two arithmetic progressions have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms ?
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 35

Question 28.
For what value of n, the nth terms of the arithmetic progressions 63, 65, 67,… and 3, 10, 17, … are equal ? (C.B.S.E. 2008)
Solution:
In the A.P. 63, 65, 67, …
a = 63 and d = 65 – 63 = 2
an = a1 + (n – 1) d = 63 + (n – 1) x 2 = 63 + 2n – 2 = 61 + 2n
and in the A.P. 3, 10, 17, …
a = 3 and d = 10 – 3 = 7
an = a + (n – 1) d = 3 + (n – 1) x 7 = 3 + 7n – 7 = 7n – 4
But both nth terms are equal
61 + 2n = 7n – 4
=> 61 + 4 = 7n – 2n
=> 65 = 5n
=> n = 13
n = 13

Question 29.
How many multiples of 4 lie between 10 and 250 ?
Solution:
All the terms between 10 and 250 are multiple of 4
First multiple (a) = 12
and last multiple (l) = 248
and d = 4
Let n be the number of multiples, then
an = a + (n – 1) d
=> 248 = 12 + (n – 1) x 4 = 12 + 4n – 4
=> 248 = 8 + 4n
=> 4n = 248 – 8 = 240
n = 60
Number of terms are = 60

Question 30.
How many three digit numbers are divisible by 7 ?
Solution:
First three digit number is 100 and last three digit number is 999
In the sequence of the required three digit numbers which are divisible by 7, will be between
a = 105 and last number l = 994 and d = 7
Let n be the number of terms, then
an = a + (n – 1) d
994 = 105 + (n – 1) x 7
994 = 105 + 7n – 7
=> 7n = 994 – 105 + 7
=> 7n = 896
=> n = 128
Number of terms =128

Question 31.
Which term of the arithmetic progression 8, 14, 20, 26, … will be 72 more than its 41st term ? (C.B.S.E. 2006C)
Solution:
In the given A.P. 8, 14, 20, 26, …
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 36

Question 32.
Find the term of the arithmetic progression 9, 12, 15, 18, … which is 39 more than its 36th term (C.B.S.E. 2006C)
Solution:
In the given A.R 9, 12, 15, 18, …
First term (a) = 9
and common difference (d) = 12 – 9 = 3
and an = a + (n – 1) d
Now a36 = a + (36 – 1) d = 9 + 35 x 3 = 9 + 105 = 114
Let the an be the required term
an = a + (n – 1) d
= 9 + (n – 1) x 3 = 9 + 3n – 3 = 6 + 3n
But their difference is 39
an – a36 = 39
=> 6 + 3n – 114 = 39
=> 114 – 6 + 39 = 3n
=> 3n = 147
=> n = 49
Required term is 49th

Question 33.
Find the 8th term from the end of the A.P. 7, 10, 13, …, 184. (C.B.S.E. 2005)
Solution:
The given A.P. is 7, 10, 13,…, 184
Here first term (a) = 7
and common difference (d) = 10 – 7 = 3
and last tenn (l) = 184
Let nth term from the last is an = l – (n – 1) d
a8= 184 – (8 – 1) x 3 = 184 – 7 x 3 = 184 – 21 = 163

Question 34.
Find the 10th term from the end of the A.P. 8, 10, 12, …, 126. (C.B.S.E. 2006)
Solution:
The given A.P. is 8, 10, 12, …, 126
Here first term (a) = 8
Common difference (d) = 10 – 8 = 2
and last tenn (l) = 126
Now nth term from the last is an = l – (n – 1) d
a10 = 126 – (10 – 1) x 2 = 126 – 9 x 2 = 126 – 18 = 108

Question 35.
The sum of 4th and 8th terms of an A.P. is 24 and the sum of 6th and 10th terms is 44. Find the A.P. (C.B.S.E. 2009)
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 37

Question 36.
Which term of the A.P. 3, 15, 27, 39, …. will be 120 more than its 21st term ? (C.B.S.E. 2009)
Solution:
A.P. is given : 3, 15, 27, 39, …….
Here first term (a) = 3
and c.d. (d) = 15 – 3 = 12
Let nth term be the required term
Now 21st term = a + (n – 1) d = 3 + 20 x 12 = 3 + 240 = 243
According to the given condition,
nth term – 21 st term = 120
=> a + (n – 1) d – 243 = 120
=> 3 + (n – 1) x 12 = 120 + 243 = 363
=> (n – 1) 12 = 363 – 3 = 360
=> n – 1 = 30
=> n = 30 + 1 = 31
31 st term is the required term

Question 37.
The 17th term of an A.P. is 5 more than twice its 8th term. If the 11th term of the A.P. is 43, find the nth term.[CBSE 2012]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 38

Question 38.
Find the number of ail three digit natural numbers which are divisible by 9. [CBSE 2013]
Solution:
First 3-digit number which is divisible by 9 = 108
and last 3-digit number = 999
d= 9
a + (n – 1) d = 999
=> 108 + (n – 1) x 9 = 999
=> (n – 1) d = 999 – 108
=> (n – 1) x 9 = 891
=> n – 1 = 99
=> n = 99 + 1 = 100
Number of terms = 100

Question 39.
The 19th term of an A.P. is equal to three times its sixth term. If its 9th term is 19, find the A.P. [CBSE 2013]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 39

Question 40.
The 9th term of an A.P. is equal to 6 times its second term. If its 5th term is 22, find the A.P. [CBSE 2013]
Solution:
Let a be the first term and d be the common difference and
Tn = a + (n – 1) d
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 40

Question 41.
The 24th term of an A.P. is twice its 10th term. Show that its 72nd term is 4 times its 15th term. [CBSE 2013]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 41
Hence 72nd term = 4 times of 15th term

Question 42.
Find the number of natural numbers between 101 and 999 which are divisible by both 2 and 5. [CBSE 2014]
Solution:
Numbers divisible by both 2 and 5 are 110, 120, 130, ………. , 990
Here a = 110, x = 120 – 110 = 10
an = 990
As a + (n – 1) d = 990
110 + (n – 1) (10) = 990
(n – 1) (10) = 990 – 110 = 880
n – 1 = 88
n = 88 + 1 = 89

Question 43.
If the seventh term of an AP is \(\frac { 1 }{ 9 }\) and its ninth term is \(\frac { 1 }{ 7 }\) , find its (63) rd term. [CBSE 2014]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 42
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 43

Question 44.
The sum of 5th and 9th terms of an AP is 30. If its 25th term is three times its 8th term, find the AP. [CBSE 2014]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 44

Question 45.
Find where 0 (zero) is a term of the AP 40, 37, 34, 31, …… [CBSE 2014]
Solution:
AP 40, 37, 34, 31, …..
Here a = 40, d = -3
Let Tn = 0
Tn = a + (n – 1) d
=> 0 = 40 + (n – 1) (-3)
=> 0 = 40 – 3n + 3
=> 3n = 43
=> n = \(\frac { 43 }{ 3 }\) which is in fraction
There is no term which is 0

Question 46.
Find the middle term of the A.P. 213, 205, 197, …, 37. [CBSE2015]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 45

Question 47.
If the 5th term of an A.P. is 31 and 25th term is 140 more than the 5th term, find the A.P. [BTE2015]
Solution:
We know that,
Tn = a + (n – 1 )d
T5 = a + 4d => a + 4d = 31 ……(i)
and T25 = a + 24d
=>a + 24d = 140 + T5
=> a + 24d = 140 + 31 = 171 …..(ii)
Subtracting (i) from (ii),
20d= 140
and a + 4d = 31
=> a + 4 x 7 = 31
=> a + 28 = 31
=> a = 31 – 28 = 3
a = 3 and d = 7
AP will be 3, 10, 17, 24, 31, ……..

Question 48.
Find the sum of two middle terms of the
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 46
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 47
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 48

Question 49.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 49

Question 50.
If an A.P. consists of n terms with first term a and nth term l show that the sum of the mth term from the beginning and the mth term from the end is (a + l).
Solution:
In an A.P.
Number of terms = n
First term = a
and nth term = l
mth term (am) = a + (m – 1) d
and mth term from the end = l – (m – 1)d
Their sum = a + (m – 1) d + l – (m – 1) d = a + l
Hence proved.

Question 51.
How many numbers lie between 10 and 300, which when divided by 4 leave a remainder 3? [NCERT Exemplar]
Solution:
Here, the first number is 11, which divided by 4 leave remainder 3 between 10 and 300.
Last term before 300 is 299, which divided by 4 leave remainder 3.
11, 15, 19, 23, …, 299
Here, first term (a) = 11,
common difference (d) = 15 – 11 = 4
nth term, an = a + (n – 1 ) d = l [last term]
=> 299 = 11 + (n – 1) 4
=> 299 – 11 = (n – 1) 4
=> 4(n – 1) = 288
=> (n – 1) = 72
n = 73

Question 52.
Find the 12th term from the end of the A.P. -2, -4, -6, …, -100. [NCERT Exemplar]
Solution:
Given, A.P., -2, -4, -6, …, -100
Here, first term (a) = -2,
common difference (d) = -4 – (-2)
and the last term (l) = -100.
We know that, the nth term an of an A.P. from the end is an = l – (n – 1 )d,
where l is the last term and d is the common difference. 12th term from the end,
an = -100 – (12 – 1) (-2)
= -100 + (11) (2) = -100 + 22 = -78
Hence, the 12th term from the end is -78

Question 53.
For the A.P.: -3, -7, -11,…, can we find a30 – a20 without actually finding a30 and a20 ? Give reasons for your answer. [NCERT Exemplar]
Solution:
True.
nth term of an A.P., an = a + (n – 1)d
a30 = a + (30 – 1 )d = a + 29d
and a20 = a + (20 – 1 )d = a + 19d …(i)
Now, a30 – a20 = (a + 29d) – (a + 19d) = 10d
and from given A.P.
common difference, d = -7 – (-3) = -7 + 3 = -4
a30 – a20 = 10(-4) = -40 [from Eq- (i)]

Question 54.
Two A.P.s have the same common difference. The first term of one A.P. is 2 and that of the other is 7. The difference between their 10th terms is the same as the difference between their 21st terms, which is the same as the difference between any two corresponding terms. Why? [NCERT Exemplar]
Solution:
Let the same common difference of two A.P.’s is d.
Given that, the first term of first A.P. and second A.P. are 2 and 7 respectively,
then the A.P.’s are 2, 2 + d, 2 + 2d, 2 + 3d, … and 7, 7 + d, 7 + 2d, 7 + 3d, …
Now, 10th terms of first and second A.P.’s are 2 + 9d and 7 + 9d, respectively.
So, their difference is 7 + 9d – (2 + 9d) = 5
Also, 21st terms of first and second A.P.’s are 2 + 20d and 7 + 20d, respectively.
So, their difference is 7 + 20d – (2 + 9d) = 5
Also, if the an and bn are the nth terms of first and second A.P.
Then bn – an = [7 + (n – 1 ) d] – [2 + (n – 1) d = 5
Hence, the difference between any two corresponding terms of such A.P.’s is the same as the difference between their first terms.

Hope given RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3

RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Other Exercises

Question 1.
For the following arithmetic progressions write the first term a and the common difference d :
(i) -5, -1, 3, 7, …………
(ii) \(\frac { 1 }{ 5 }\) , \(\frac { 3 }{ 5 }\) , \(\frac { 5 }{ 5 }\) , \(\frac { 7 }{ 5 }\) , ……
(iii) 0.3, 0.55, 0.80, 1.05, …………
(iv) -1.1, -3.1, -5.1, -7.1, …………..
Solution:
(i) -5, -1, 3, 7, …………
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 1
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 2

Question 2.
Write the arithmetic progression when first term a and common difference d are as follows:
(i) a = 4, d = -3
(ii) a = -1, d= \(\frac { 1 }{ 2 }\)
(iii) a = -1.5, d = -0.5
Solution:
(i) First term (a) = 4
and common difference (d) = -3
Second term = a + d = 4 – 3 = 1
Third term = a + 2d = 4 + 2 x (-3) = 4 – 6 = -2
Fourth term = a + 3d = 4 + 3 (-3) = 4 – 9 = -5
Fifth term = a + 4d = 4 + 4 (-3) = 4 – 12 = -8
AP will be 4, 1, -2, -5, -8, ……….
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 3
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 4

Question 3.
In which of the following situations, the sequence of numbers formed will form an A.P?
(i) The cost of digging a well for the first metre is ₹ 150 and rises by ₹ 20 for each succeeding metre.
(ii) The amount of air present in the cylinder when a vacuum pump removes each time \(\frac { 1 }{ 4 }\) of the remaining in the cylinder.
(iii) Divya deposited ₹ 1000 at compound interest at the rate of 10% per annum. The amount at the end of first year, second year, third year, …, and so on. [NCERT Exemplar]
Solution:
(i) Cost of digging a well for the first metre = ₹ 150
Cost for the second metre = ₹ 150 + ₹ 20 = ₹ 170
Cost for the third metre = ₹ 170 + ₹ 20 = ₹ 190
Cost for the fourth metre = ₹ 190 + ₹ 20 = ₹ 210
The sequence will be (In rupees)
150, 170, 190, 210, ………..
Which is an A.P.
Whose = 150 and d = 20
(ii) Let air present in the cylinder = 1
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 5
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 6
(iii) Amount at the end of the 1st year = ₹ 1100
Amount at the end of the 2nd year = ₹ 1210
Amount at the end of 3rd year = ₹ 1331 and so on.
So, the amount (in ₹) at the end of 1st year, 2nd year, 3rd year, … are
1100, 1210, 1331, …….
Here, a2 – a1 = 110
a3 – a2 = 121
As, a2 – a1 ≠ a3 – a2, it does not form an AP

Question 4.
Find the common difference and write the next four terms of each of the following arithmetic progressions :
(i) 1, -2, -5, -8, ……..
(ii) 0, -3, -6, -9, ……
(iii) -1, \(\frac { 1 }{ 4 }\) , \(\frac { 3 }{ 2 }\) , ……..
(iv) -1, – \(\frac { 5 }{ 6 }\) , – \(\frac { 2 }{ 3 }\) , ………..
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 7
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 8
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 9
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 10
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 11

Question 5.
Prove that no matter what the real numbers a and b are, the sequence with nth term a + nb is always an A.P. What is the common difference ?
Solution:
an = a + nb
Let n= 1, 2, 3, 4, 5, ……….
a1 = a + b
a2 = a + 2b
a3 = a + 3b
a4 = a + 4b
a5 = a + 5b
We see that it is an A.P. whose common difference is b and a for any real value of a and b
as a2 – a1 = a + 2b – a – b = b
a3 – a2 = a + 3b – a – 2b = b
a4 – a3 = a + 4b – a – 3b = b
and a5 – a4 = a + 5b – a – 4b = b

Question 6.
Find out which of the following sequences are arithmetic progressions. For those which are arithmetic progressions, find out the common difference.
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 12
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 13
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 14
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 15
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 16
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 17
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 18

Question 7.
Find the common difference of the A.P. and write the next two terms :
(i) 51, 59, 67, 75, …….
(ii) 75, 67, 59, 51, ………
(iii) 1.8, 2.0, 2.2, 2.4, …….
(iv) 0, \(\frac { 1 }{ 4 }\) , \(\frac { 1 }{ 2 }\) , \(\frac { 3 }{ 4 }\) , ………..
(v) 119, 136, 153, 170, ………..
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 19
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 20
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 21
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 22

Hope given RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2

RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Other Exercises

Question 1.
Show that the sequence defined by an = 5n – 7 is an A.P., find its common difference.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 1

Question 2.
Show that the sequence defined by an = 3n² – 5 is not an A.P.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2

Question 3.
The general term of a sequence is given by an = -4n + 15. Is the sequence an A.P.? If so, find its 15th term and the common difference.
Solution:
General term of a sequence
an = -4n + 15
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 3

Question 4.
Write the sequence with nth term :
(i) an = 3 + 4n
(ii) an = 5 + 2n
(iii) an = 6 – n
(iv) an = 9 – 5n
Show that all of the above sequences form A.P.
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 4
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 5

Question 5.
The nth term of an A.P. is 6n + 2. Find the common difference. [CBSE 2008]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 6

Question 6.
Justify whether it is true to say that the sequence, having following nth term is an A.P.
(i) an = 2n – 1
(ii) an = 3n² + 5
(iii) an = 1 + n + n²
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 7
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 8
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 9

Hope given RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1

RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1

Other Exercises

Question 1.
Write the first five terms of each of the following sequences whose nth terms are:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 1
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 2
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 3
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 4
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 5
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 6

Question 2.
Find the indicated terms in each of the following sequences whose nth terms are:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 7
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 8

Question 3.
Find the next five terms of each of the following sequences given by :
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 9
Solution:
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 10
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 11
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 12
RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 13

Hope given RD Sharma Class 10 Solutions Chapter 5 Arithmetic Progressions Ex 5.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

CA Foundation Business Economics Study Material – Elasticity of Demand

CA Foundation Business Economics Study Material Chapter 2 Theory of Demand and Supply – Elasticity of Demand

Elasticity of Demand

  • Elasticity of demand is defined as the responsiveness or sensitiveness of the quantity demanded of a commodity to the changes in any one of the variables on which demand depends.
  • These variables are price of the commodity, prices of the related commodities, income of the consumers and many other factors on which demand depends.
  • Accordingly, we have price elasticity, cross elasticity, elasticity of substitution, income elasticity and advertisement elasticity.
  • Unless mentioned otherwise, it is price elasticity of demand which is generally referred.

Price Elasticity of Demand

  • Price elasticity measures the degree of responsiveness of quantity demanded of a commodity to a change in its price, given the consumer’s income, his tastes and prices of all other goods.
  • It reflects how sensitive buyers are to change in price.
  • Price elasticity of demand can be defined “as a ratio of the percentage change in the quantity demanded of a commodity to the percentage change in its own price”.
  • It may be expressed as follows:
    ca-foundation-business-economics-study-material-elasticity-of-demand-1
  • Rearranging the above expression we get:
    ca-foundation-business-economics-study-material-elasticity-of-demand-2
  • Since price and quantity demanded are inversely related, the value of price elasticity coefficient will always be negative. But for the value of elasticity coefficients we ignore the negative sign and consider the numerical value only. .

The value of elasticity coefficients will vary from zero to infinity.

  • When the coefficient is zero, demand is said to be perfectly inelastic.
  • When the coefficient lies between zero and unity, demand is said to be inelastic.
  • When coefficient is equal to unity, demand has unit elasticity.
  • When coefficient is greater than one, demand is said to elastic.
  • In extreme cases co-efficient could be infinite.

The degrees (types) of price elasticity of demand

Price elasticity measures the degree of responsiveness of quantity demanded of a commodity to a change in its price. Depending upon the degree of responsiveness of the quantity demanded to the price changes, we can have the following kinds of price elasticity of demand.

1. Perfectly Inelastic Demand: (Ep = 0):
ca-foundation-business-economics-study-material-elasticity-of-demand-3

When change in price has no effect on quantity demanded, then demand is perfectly inelastic. E.g. – If price falls by 20% and the quantity demanded remains unchanged then,
Ep = 0/20 = 0. In this case, the demand curve is a vertical straight line curve parallel to y-axis as shown in the figure.
The figure shows that, whatever the price, quantity demanded of the commodity remains unchanged at OQ.

2. Perfectly Elastic Demand: (Ep = ∞):
ca-foundation-business-economics-study-material-elasticity-of-demand-4
When with no change in price or with very little change in price, the demand for a commodity expands or contracts to any extent, the demand is said to be perfectly elastic. In this case, the demand curve is a horizontal and parallel to X-axis.
The figure shows that demand curve DD is parallel to X-axis which means that at given price, demand is ever increasing.

3. Unit Elastic Demand: (Ep = 1):
ca-foundation-business-economics-study-material-elasticity-of-demand-5

When the percentage or proportionate change in price is equal to the percentage or proportionate change in quantity demanded, then the demand is said to be unit elastic. E.g. If price falls by 10% and the demand rises by 10% then, Demand Curve DD is a rectangular hyperbola curve suggesting unitary elastic demand.
E= 10/10 = 1

4. Relatively Elastic Demand: ( E> 1):
ca-foundation-business-economics-study-material-elasticity-of-demand-6
When a small change in price leads to more than proportionate change in quantity demanded then the demand is said to be relatively elastic E.g. If price falls by 10% and demand rises by 30% then, E = 30/10 = 3 > 1. The coefficient of price elasticity would be somewhere between ONE and INFINITY. The elastic demand curve is flatter as shown in figure.

Demand curve DD is flat suggesting that the demand is relatively elastic or highly elastic. Relatively elastic demand occurs in case of less urgent wants or if the expenditure on commodity is large or if close substitutes are available.

5. Relatively Inelastic Demand: (E< 1):
ca-foundation-business-economics-study-material-elasticity-of-demand-7

When a big change in price leads to less than proportionate change in quantity demanded, then the demand is said to be relatively inelastic. E.g. If price falls by 20% and demand rises by 5% then, E = 5/20 = 5 < 1 The coefficient of price
elasticity is somewhere between ZERO and ONE. The demand curve in this case has steep slope.

Demand curve DD is steeper suggesting that demand is less elastic or relatively inelastic. Relatively inelastic demand occurs in case compulsory goods ie. necessities of life.

Measurement of price elasticity of demand

The different methods of measuring price elasticity of demand are:

  1. The Percentage or Ratio or Proportional Method,
  2. The Total Outlay Method,
  3. The Point or Geometrical Method, and
  4. The Arc Method.

1. The Percentage Method
This method is based on the definition of elasticity of demand. The coefficient of price elasticity of demand is measured by taking ratio of percentage change in demand to the percentage change in price. Thus, we measure the price elasticity by using the following formula
ca-foundation-business-economics-study-material-elasticity-of-demand-8

  • If the coefficient of above ratio is equal to ONE or UNITY, the demand will be unitary.
  • If the coefficient of above ratio is MORE THAN ONE, the demand is relatively elastic.
  • If the coefficient of above ratio is LESS THAN ONE, the demand is relatively inelastic.

2. The Total Outlay or Expenditure Method or Seller’s Total Revenue Method

The total outlay refers to the total expenditure done by a consumer on the purchase of a commodity. It is obtained by multiplying the price with the quantity demanded. Thus,
Total Outlay (TO) = Price (P) × Quantity (Q)
TO = P × Q
In this method, we measure price elasticity by examining the change in total outlay due to change in price.
Dr. Alfred Marshall laid the following propositions:

  • When with the change in price, the TO remains unchanged, Ep = 1.
  • When with a rise in price, the TO falls or with a fall in price, the TO rises, Ep > 1.
  • When with a rise in price, the TO also rises and with a fall in price, the TO also falls, E> 1

ca-foundation-business-economics-study-material-elasticity-of-demand-9

However, total outlay method of measuring price elasticity is less exact. This method only classifies elasticity into elastic, inelastic and unit elastic.
The exact and precise coefficient of elasticity cannot be found out with this method.

3. The Point Method or Geometric Method

  • The point elasticity method, we measure elasticity at a given point on a demand curve.
  • This method is useful when changes in price and quantity demanded are very small so that they can be considered one and the same point only.
  • E.g. If price of X commodity was Rs. 5,000 per unit and now it changes to Rs. 5002 per unit which is very small change. In such a situation we measure elasticity at a point on
    ca-foundation-business-economics-study-material-elasticity-of-demand-10
  • Diagrammatically also we can find elasticity at a point by using the formula—
    ca-foundation-business-economics-study-material-elasticity-of-demand-11

Figure:

  • The figure shows that even though the shape of the demand curve is constant, the elasticity is different at different points on the curve.
  • If the demand curve is not a straight line curve, then in order to measure elasticity at a point on demand curve we have to draw tangent at the given point and then measure elasticity using the above formula.
  • We can also find out numerical elasticities on different points.

4. The Arc Elasticity Method

  • When there is large change in the price or we have to measure elasticity over an arc of the demand curve, we use the “arc method” to measure price elasticity of demand.
  • The arc elasticity is a measure of the “average elasticity” ie. elasticity at MID-POINT that connects the two points on the demand curve.
  • Thus, an arc is a portion of a curved line, hence a portion of a demand curve. Here instead of using original or new data as the basis of measurement, we use average of the two.
    ca-foundation-business-economics-study-material-elasticity-of-demand-12
  • The formula used is
    ca-foundation-business-economics-study-material-elasticity-of-demand-13

Determinants of price elasticity of demand

Price elasticity of demand which measures the degree of responsiveness of quantity demanded of a commodity to a change in price (other things remaining unchanged) depends on the following factors:—

1. Nature of commodity:

  • The demand for necessities of life like food, clothing, housing etc. is less elastic or inelastic because people have to buy them whatever be the price.
  • Whereas, demand for luxury goods like cars, air-conditioners, cellular phone, etc. is elastic.

2. Availability of Substitutes:

  • If for a commodity wide range of close substitutes are available ie. if a commodity is easily replaceable by others, its demand is relatively elastic. E.g. Demand for cold drinks like Thumbs-up, Coca-cola, Limca, etc.
  • Conversely, a commodity having no close substitute has inelastic demand. E.g. Salt (but demand for TATA BRAND SALT is elastic.)

3. Number of uses of a commodity:

  • A commodity which has many uses will have relatively elastic demand.
    E.g. Electricity can be put to many uses like lighting, cooking, motive-power, etc. If the price of electricity falls, its consumption for various purposes will rise and vice versa.
  • On the other hand if a commodity has limited uses will have inelastic demand.

4. Price range:

  • If price of a commodity is either too high or too low, its demand is inelastic but those which are in middle price range have elastic demand.

5. Position of a commodity in the budget of consumer:

  • If a consumer spends a small proportion of his income to purchase a commodity, the demand is inelastic. E.g. Newspaper, match box, salt, buttons, needles.
  • But if consumer spends a large proportion of his income to purchase a commodity, the demand is elastic E.g. Clothes, milk, etc.

6. Time period:

  • The longer any price change remains the greater is the price elasticity of demand.
    On the other hand, shorter any price change remains, the lesser is the price elasticity of demand. .

7. Habits:

  • Habits makes the demand for a commodity relatively inelastic. E.g. A smoker’s demand for cigarettes tend to be relatively inelastic even at higher price.

8. Tied Demand (Joint Demand):

  • Some goods are demanded because they are used jointly with other goods. Such goods normally have inelastic demand as against goods having autonomous demand.
    E.g. Printers & Cartridges.

Knowledge of the concept of elasticity of demand and the factors that may change it is of great IMPORTANCE in practical life. The concept of elasticity of demand is helpful to-

  1. Business Managers as it helps then to recognise the effect of price change on their total sales and revenues. The objective of a firm is profit maximization. If demand is ELASTIC for the product, the managers can fix a lower price in order to expand the volume of sales and vice versa.
  2. Government for determining the prices of goods and services provided by them. E.g.- transport, electricity, water, cooking gas, etc. It also helps governments to understand the nature of response of demand when taxes are raised and its effect on the tax revenues. E.g.- Higher taxes are imposed on the goods having INELASTIC DEMAND like cigarettes, liquor, etc.

Income Elasticity of Demand

  • The income elasticity of demand measures the degree of responsiveness of quantity demanded to changes in income of the consumers.
  • The income elasticity is defined as a ratio of percentage change in the quantity demanded to the percentage change in income.
    ca-foundation-business-economics-study-material-elasticity-of-demand-14
    ca-foundation-business-economics-study-material-elasticity-of-demand-15

The income elasticity of demand is POSITIVE for all normal or luxury goods and the income elasticity of demand is NEGATIVE for inferior goods. Income elasticity can be classified under five heads:-

ca-foundation-business-economics-study-material-elasticity-of-demand-16

  1. Zero Income Elasticity:
    • It means that a given increase in income does not at all lead to any increase in quantity demanded of the commodity.
    • In other words, demand for the commodity is completely income inelastic or Ey = 0
    • Commodities having zero income elasticity are called NEUTRAL GOODS.
    • E.g. – Demand in case of SALT, MATCH BOX, KEROSENE OIL, POST CARDS, etc.
  2. Negative Income Elasticity:
    • It means that an increase in income results in fall in the quantity demanded of the commodity or Ey < 0.
    • Commodities having negative income elasticity are called INFERIOR GOODS.
    • E.g. – Jawar, Bajra, etc.
  3. Unitary Income Elasticity:
    • It means that the proportion of consumer’s income spent on the commodity remains unchanged before and after the increase in income or Ey = 1. This represents a useful dividing line.
  4. Income Elasticity Greater Than Unity:
    • It refers to a situation where the consumers spends GREATER proportion of his income on a commodity when he becomes richer. Ey > 1,
    • E.g. In the case of LUXURIES like cars, T.V. sets, music system, etc.
  5. Income Elasticity Less Than Unity:
    • It refers to a situation where the consumer spends a SMALLER proportion of his income on a commodity when he becomes richer. Ey < 1,
    • E.g. In the case of NECESSITIES like rice, wheat, etc.

Cross elasticity of demand

  • Many times demand for two goods are related to each other.
  • Therefore, when the price of a particular commodity changes, the demand for other commodities changes, even though their own prices have not changed.
  • We measures this change under cross elasticity.

The cross elasticity of demand can be defined “as the degree of responsiveness of demand for a commodity to a given change in the price of some RELATED commodity” OR “as the ratio of percentage change in quantity demanded of commodity X to a given percentage change in the price of the related commodity Y”. Symbolically:
ca-foundation-business-economics-study-material-elasticity-of-demand-17

Cross elasticity of demand can be used to classify goods as follows:-

  1. Substitute Goods: E.g.: Tea and Coffee. The cross elasticity between two substitutes is always POSITIVE. If cross elasticity is infinite, the two goods are perfect substitute and if it is greater than zero but less than infinity, the goods are substitutes.
    ca-foundation-business-economics-study-material-elasticity-of-demand-18
  2. Independent Goods: E.g.: Pastry and Scooter. The two commodities are not related. The cross elasticity in such cases is ZERO.
  3. Complementary Goods: E.g.: Petrol and Car. If the price of petrol rise, its demand falls and along with it demand for cars also falls. The cross elasticity in such cases is NEGATIVE
    ca-foundation-business-economics-study-material-elasticity-of-demand-19

Advertisement or Promotional Elasticity of Demand

  • Demand of many goods is also influenced by advertisement or promotional efforts.
  • It means that the demand for a good is responsive to the advertisement expenditure incurred by a firm.
  • The measurement of the degree of responsiveness of demand of a good to a given change in advertisement expenditure is called advertisement or promotional elasticity of demand.
  • It measures the percentage change in demand to a give ONE PERCENTAGE change in advertising expenditure. It helps a firm to know the effectiveness of its advertisement campaign.
  • Advertisement elasticity of demand is POSITIVE. Higher the value, higher is change in demand to change in advertisement expenditure.
    ca-foundation-business-economics-study-material-elasticity-of-demand-20

The value of advertisement elasticity varies between zero and infinity. If-

  • Ea = 0, no change in demand to increase in advertisement expenditure
  • Ea > 0 but < 1, less than proportionate change in demand to a change in advertisement expenditure
  • Ea = 1, change in demand is equal to change in advertisement expenditure
  • Ea > 1, higher rate of change in demand than change in advertisement expenditure